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Scalable Mobile Visual Classification

by Kernel Preserving Projection

over High-Dimensional Features
Yu-Chuan Su, Tzu-Hsuan Chiu, Yin-Hsi Kuo, Chun-Yen Yeh, Winston H. Hsu

Abstract—Scalable mobile visual classification – classifying
images/videos in a large semantic space on mobile devices in real
time – is an emerging problem as observing the paradigm shift
towards mobile platforms and the explosive growth of visual data.
Though seeing the advances in detecting thousands of concepts
in the servers, the scalability is handicapped in mobile devices
due to the severe resource constraints within. However, certain
emerging applications require such scalable visual classification
with prompt response for detecting local contexts (e.g., Google
Glass) or ensuring user satisfaction. In this work, we point out
the ignored challenges for scalable mobile visual classification
and provide a feasible solution. To overcome the limitations of
mobile visual classification, we propose an unsupervised linear
dimension reduction algorithm – kernel preserving projection
(KPP), which approximates the kernel matrix of high dimensional
features with low dimensional linear embedding. We further
introduce sparsity to the projection matrix to ensure its compli-
ance with mobile computing (with merely 12% non-zero entries).
By inspecting the similarity of linear dimension reduction with
low-rank linear distance metric and Taylor expansion of RBF
kernel, we justified the feasibility for the proposed KPP method
over high-dimensional features. Experimental results on three
public datasets confirm that the proposed method outperforms
existing dimension reduction methods. What is even more, we can
greatly reduce the storage consumption and efficiently compute
the classification results on the mobile devices.

Index Terms—Mobile Image Classification, Dimension Reduc-
tion, Distance Metric Learning, Manifold Learning

I. INTRODUCTION

W ITH the explosive growth of web images and videos,

the semantic understanding for such big visual data is

in dire needs; and the growth happens not only in the scale of

data, but also in the number of concepts (or categories) to be

detected [1]–[4]. Motivations for increasing the semantic space
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of visual recognition system come from research interests

as well as real application needs; for example, since human

can recognize tens of thousands of concepts from images

and categorize them accordingly, an ideal automatic photo

annotation system should also be able to do so. The scalable

classification methods (e.g., linear classifier [5]) have been

shown effective for recognizing high dimensional features in

large semantic space [6]–[8], and by leveraging the distributed

servers, we are now able to detect thousands of concepts in

real time.

Meanwhile, the rapid development of mobile technolo-

gies has induced the paradigm shift from personal computer

(PC) to mobile devices. On nowadays mobile devices, high

quality camera becomes a basic component; and combining

with the rich contexts in mobile devices, the camera can

enable many proactive and smart applications such as remote

healthcare, lifelog, automatic photo annotation. Many of these

applications rely on mobile visual recognition – labeling or

recognizing the semantic meaning (i.e., categories, scenes,

tags) of images or videos on the mobile devices.

Although large scale visual recognition has been enabled

by many promising technologies [6]–[10], most of them

are designed for servers with abundant computing resources.

However, the computing resources on the mobiles are more

restricted. One of the most severe resource constraint is the

storage limit, where the storage of current mobile devices

are in dozens of GBs, which is much smaller than regular

servers. Unfortunately, many state-of-the-art visual recognition

systems rely on high dimensional features [6], which result in

complicated models that cannot be stored on mobile devices.

To overcome the limits, we propose a new linear dimension

reduction entailed by a sparse projection matrix that aims at

preserving classification performance. The resultant classifica-

tion models and projection matrix can fit in mobile devices and

enable scalable mobile visual recognition on devices directly.

The primary contributions of this paper include:

• We address the importance and requirements of scalable

mobile visual recognition and propose a feasible system

design. While there exist works aiming at either mobile

or scalable visual recognition, the challenge of combining

the two has not been investigated.

• We propose a new dimension reduction method, Kernel

Preserving Projection (KPP), especially designed for mo-

bile visual classification. KPP preserves the classification

performance of low dimensional linear classifiers; fur-

thermore, the projection matrix is sparse and can easily
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fit in current mobile devices.

• We justify the feasibility of KPP by Taylor expansion

of kernel function. Experimental results over three public

datasets also confirm that it outperforms existing dimen-

sion reduction techniques in classification.

The remaining of this paper is organized as follows. In

section II, we describe related work. In section III, we discuss

the issues for mobile computing and describe our system

design to fulfill the requirements. In section IV, we propose

a new linear dimension reduction especially compliant with

mobile computing. We show the experimental results in section

V. Discussions and conclusions are in section VI.

II. RELATED WORK

A. Scalable visual recognition

Large scale visual recognition is a very active research topic

in recent years [2], [6], [11], [12]. The introduction of Ima-

geNet dataset [1], which contains more than 20,000 concepts,

has enabled such studies. The importance of scalable visual

recognition has been addressed by multiple research groups

[2], [3], [11], and many interesting properties and challenges

for large scale visual recognition have been reported.

Two common components for state-of-the-art large scale

visual recognition systems are high dimensional image fea-

tures and linear support vector machine (SVM) [6], [7]. High

dimensional image features formed by pooling local features

are introduced to improve the discriminability, while linear

classifiers ensure the efficiency and tractability of both training

and testing [5]. The most popular pooling methods include

bag-of-feature (BoF) methods [13] with spatial pyramid (SPM)

[14] and residual based methods such as vector of locally ag-

gregated descriptors (VLAD) [15]. All these features are high

dimensional and lead to complicated model which requires

large storage and may not fit in mobile devices. Even with

linear classifiers, the model may still grow too large when the

size of semantic space increases, which limits the scalability

of mobile visual recognition system.

One obvious challenge for large scale visual recognition

is how to train the classifiers efficiently, which leads to the

popularity of linear classifier such as linear SVM. To further

improve the learning speed, many systems adopt primal space

solver and use stochastic gradient descend for learning [6].

Recently, efforts have also been made to improve the testing

efficiency. In [16], the authors speed up the classification

efficiency given a big trained model which may contain mil-

lions of classifiers by hashing both classifiers and features to

Hamming space and use the Hamming distance to approximate

the original classifier. By replacing inner product on high

dimensional floating point vector with compact hamming code,

the classification process can be 20 to 200 times faster than

using original classifiers, and the size of the classifier can

also be significantly reduced. Although prediction with trained

model is usually much more efficient than training the model,

these improvements help to reduce the resource requirement

for testing, which is especially important in limited resource

environment such as mobile devices.

Fig. 1: System overview for mobile visual classification. The

photo (or video) is recorded by the camera on the mobile

device. A high-dimensional feature is computed by the device,

then the feature dimension is reduced by a sparse projection

matrix learned offline. The classifiers are learned in the

reduced dimension space. Multiple classifications are thus

performed efficiently on the device using the low-dimensional

linear support vector machine (SVM). The key for mobile

visual classification is whether the projection matrix preserves

the classification accuracy and is feasible in more compact

representation (i.e., sparsity).

B. Mobile visual search

Mobile visual search has been widely studied in the past

few years [17], [18]. The most popular framework of mobile

visual search system is to compute image features on the

mobile device and send the features to server, where the server

performs retrieval and returns the result. With the computing

power of current mobile devices, the feature computation can

be done within 2 seconds [17]; in fact, in our preliminary

implementation, it takes only around 0.35 seconds to pool

SURF local features and generate the VLAD signature (by

sparse projection matrix) on iPhone 5. However, due to the

network bandwidth limitation, transmitting (local or aggre-

gated high-dimensional) features over wireless network can

be very slow and the main challenge of mobile visual search

is to reduce the traffic between devices and servers. The

feature size reduction is mainly through hashing the features

to generate representative (binary) signatures [9], [18], [19].

Although the success in mobile visual search brings light to

the possibility of scalable mobile visual recognition systems,

directly porting existing large scale visual classification system

on mobile devices is infeasible; see section III for more

detailed discussions.

An important lesson learned from mobile visual search

system is that the ground truth may growth and change

over time due to the appearance change of concepts, where

the information may be captured through newly contributed

content or user feedback [20]. Therefore, a system that can

adapt to updated training set is highly desired for real mobile

application, which raises the need for distance metric and

recognition model that can be updated easily in online system.

C. Dimension reduction

Dimension reduction is a common preprocessing step before

performing classification. It reduces the storage and memory

requirement of training data as well as the resultant model by
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reducing the input space. It may also improve performance by

rejecting noisy features before training to avoid overfitting.

While there exists many dimension reduction algorithms,

not all of them fit in the context of mobile computing. In

particular, the most popular dimension reduction method in

mobile visual search systems is by linear hashing, such as

random projection (RP) [9], random maximum margin hashing

(RMMH) [21]. These linear hashing methods require binariza-

tion after linear projection as the last step, while binarization

introduces quantization error which is ignored in most hashing

method yet may introduce significant degradation in perfor-

mance, especially in eigenvector based projection. Iterative

quantization (ITQ) [22] is designed to reduce quantization

error of binary code by applying an additional rotation after

linear projection. Since linear hashing is essentially a linear

projection with binarization of the projected vector, it can be

computed very efficiently for unseen data, which is important

in mobile applications where real-time response is desired.

Among all of the hashing algorithms, the semi-supervised

Sequential Projection Learning for Hashing (SPLH) [19]

achieves the state-of-the-art performance by utilizing the (sup-

plemental) data pair information. A sparse version of SPLH

is also proposed to better fit into mobile devices [18], where

the sparsity reduces the storage requirement and computational

cost of the projection. It is worth noting that when applying

SPLH to a classification problem, the class label can be used

for the label matrix S and lead to a supervised algorithm.

Besides dimension reduction, a feature compression method

– product quantization (PQ) [10] – is also adopted in large

scale visual recognition. Although both PQ and linear hashing

reduce the training data size and enable the learning process

over big data, PQ does not reduce the number of parameters

to learn nor reduce the model size, because the classifier is

learned in the original input space.

D. Distance metric learning

Distance metric learning is an active research area in ma-

chine learning [23]–[26]. The goal of distance metric learning

is to find the optimal distance metric d(i, j) between data

points i and j, where the criteria of “optimal” is application

dependent.

Based on the form of d(i, j) and the learning process, dis-

tance metric can be categorized into either linear or nonlinear

and supervised or unsupervised. There is a direct link between

linear projection and linear distance metric: since a linear

distance metric can be formulated as

d(x,y) = (x− y)TM(x− y), (1)

with M being positive semidefinite and can be decomposed

into M = LTL, a linear distance metric is equivalent to a

feature transform with linear projection φ(x) = Lx such that

d(x,y) = (Lx− Ly)T (Lx− Ly). (2)

And the inner product in the transformed feature space be-

comes φ(x)φ(y) = xTLTLy.

Many unsupervised distance metric learning algorithms are

essentially designed for dimension reduction, such as principal

Fig. 2: The storage reduction by linear dimension reduction.

Given D-dimensional feature and C-categories for classifica-

tion (e.g., by linear SVM), original classifiers require storage

of CD real values as in (a); performing dimension reduction

with a projection matrix with d-dimension output as shown in

(b) requires (D+C)d storage, if we further consider sparsity of

the projection matrix and let r be the ratio of non-zero matrix

element (r ≈ 12% in our experiment), the storage reduction

becomes CD− (rD+C)d as illustrated in (c). The reduction

also corresponds to computation relatively. (Best seen in color)

component analysis (PCA), multidimensional scaling (MDS)

and locality linear embedding (LLE) [27]. Kandola et al. argue

the theoretic benefit of linear distance metric is that it can

capture the correlation between different dimensions by the

off-diagonal terms [28]. For high dimensional features, the

correlation between different dimensions should be weak and

which results in a sparse distance metric [24], [25]. In [26], the

authors further argued that the eigenvalues of distance metric

M should also be sparse, which leads to a low-rank distance

metric that performs dimension reduction by nature.

Despite the close connection of linear distance metric and

linear hashing, the benefit of distance metric is ignored in

previous works on linear hashing for mobile visual search.

In this paper, we consider the theoretical benefit of distance

metric and design a new linear dimension reduction accord-

ingly. The resultant dimension reduction is closely related to

MDS, which aims to learn a low dimensional embedding that

preserves pair-wise distance. Please see section IV for details.

III. SCALABLE MOBILE VISUAL CLASSIFICATION

In this section, we describe our system design for scal-

able mobile visual classification system. We first discuss

the important issues of mobile computing that have to be

carefully handled in mobile visual classification system. We

then describe our system design and explain how the design

fulfills those requirements.

A. Issues of mobile computing

Two of the most important issues for mobile computing

is the resource constraints and the requirement for instant

response. Resource constraints include storage, computing

power, network bandwidth, etc. The most significant one is

storage, which restricts the amount of models that can be

stored on the devices and limits the scalability of visual clas-

sification systems. Other constraints such as computing power

limits the use of complicated models for classification, and
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the network bandwidth forbids applications that require bulks

network transmission. The requirement for instant response

comes from the fact that long response time will significantly

degrade user experiences. Ensuring the prompt response is

even more difficult with the hardware constraints on mobiles.

Therefore, a careful system design and algorithm optimization

is important.

B. Goal and system overview

Seeing the issues and requirements in mobile visual clas-

sification, we preliminarily investigate the feasibility for per-

forming visual classification purely on the mobile. There are

two reasons to eliminate the dependency on wireless network;

first, the reliability and coverage of wireless network is not

satisfactory in many places; second, the network delay will

degrade user experience [17]. We summarize the proposed

system in fig. 1.

To ensure both classification accuracy and efficiency, we

propose to adopt linear SVM with high dimensional visual fea-

ture, following many state-of-the-art large scale visual recog-

nition systems [6], [7]. Nonlinear SVM requires the storage of

multiple support vectors and the calculations of kernel function

over all support vectors on classification, which is not suitable

for mobiles in both storage and computation efficiency. The

same concerns hold for nearest neighbor classifiers.

Although being more space efficient, the high dimensional

linear SVMs still require huge storage which limits the

scalability of semantic space. To overcome the limit, we

“compress” the classifiers by reducing the input space with

linear projection before classification, as illustrated in fig. 2.

We also impose a sparse constraint on the projection matrix

to reduce the storage overhead of projection matrix, otherwise

the projection matrix may not fit in the memory of mobile

devices (e.g., 200k to 512 dimension projection matrix takes

780MB). By reducing the size of both classifiers and projec-

tion matrix, we improve the scalability of native mobile visual

classification systems. Note that because the size of classifiers

and projection matrix is equal to the number of floating

point operations when performing classification, reduction of

storage also corresponds to reduction of computation. The

design also improves updatability of the system by reducing

the overhead for updating classification models and projection

matrix, which is highly desirable or even necessary for real

mobile applications.

There are three requirements for the mobile-classification-

compliant dimension reduction. First, it has to be computation

efficient. Second, it has to preserve the classification perfor-

mance. Finally, the storage consumption should be small. To

fulfill these requirements, we design a new linear dimension

reduction algorithm – KPP, which will be described in details

in the next section.

IV. DIMENSION REDUCTION BY KERNEL PRESERVING

PROJECTION (KPP)

Because KPP is a linear dimension reduction and can

be computed efficiently, the resource limitation of mobile

is addressed by nature. The further objectives of the new

Fig. 3: Illustration for Kernel preserving projection (KPP).

Conventionally, a kernel function is the inner product after

performing feature transformation to a higher or even infinite-

dimensional space (Left). Our proposal, KPP, goes another

way (Right). It is a linear feature transformation by projection

that “reduces” the dimension of the original features. The inner

product of the signatures generated by KPP approximates the

original kernel. The justification of approximation is in section

IV-D.

projection matrix learning algorithm are: (1) preserving the

classification accuracy of the original features and (2) reducing

the storage overhead of projection matrix.

The symbol is defined as follows. X ∈ R
D×N denotes the

dataset containing N instances, with the column vector xi

denotes data point i in D dimensional space. K denotes the

kernel matrix, with Kij = k(xi,xj), where k(, ) is the kernel

function.

A. Projection learning to approximate kernel matrix

Our primary goal is to find a linear feature transformation

(by projection) where the classification performance of resul-

tant feature is similar to the original ones. The goal is similar

to that of feature map methods [29], which try to find a explicit

feature transformation Φ̄(x) where

k(xi, xj) ≈ Φ̄(xi) · Φ̄(xj). (3)

Because kernel functions determine the input space of SVM

(in dual form) by implicit feature transformation, the feature

transformation Φ̄(x) will yield a SVM similar to that of kernel

function k(, ) and thus similar performance.

Traditionally, a feature map Φ̄ increases the feature dimen-

sion and therefore limits the scalability of data and feature

dimension. Gavves et al. proposed [30] a feature selection

and weighting method for additive kernels by learning the

weights of feature dimensions such that the kernel matrix of

resultant low dimensional features approximates the original

kernel. Although the method improves scalability, it does not

consider cross dimension correlations and applies only to

additive kernel, while our method applies to general kernels.

Motivated by the feature map methods and the applicability

in unseen images in mobile classification, we aim to learn a
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projection matrix P ∈ R
d×D such that the resultant kernel

matrix of low dimension signature approximates the kernel of

the original features

K ≈ (PX)T (PX)

= XTPTPX, (4)

as illustrated in fig. 3. Preliminarily we try to derive the

projection matrix as

P∗ = argmin
P

‖K−XTPTPX‖F , (5)

where ‖ · ‖F denotes the Frobenius norm. The formulation

is similar to multidimensional scaling, where the pair-wise

distance equals to the kernel function k(xi, xj).

B. Information-theoretic-based regularization

To avoid the projection matrix P from overfitting, we

introduce a regularization to eq. 5 that maximizes the variance

of pair-wise similarities of training data. In other words,

we want the distribution of similarities spreads as wide as

possible, similar to the equal partition objective in hashing

algorithm like SPLH and RMMH. From an information theory

point of view, if the probability distribution of random variable

X is a normal distribution, its entropy is a function of variance

H(X) =
1

2
ln(2πeσ2

X). (6)

Therefore, maximizing variance is to maximize the entropy.

Assuming the data distribution is zero mean, maximizing

kernel values variance of signatures will lead to

P∗ = argmax
P

‖XTPTPX‖2F . (7)

Combining with the original objective function, the resultant

objective function can be formulated as:

P∗ = argmin
P

‖K−XTPTPX‖F

−λ‖XTPTPX‖2F . (8)

C. Sparse projection matrix

The last requirement for the projection matrix is to minimize

the storage overhead. Given the input and output dimension

of the projection matrix, storage reduction can be achieved

by introducing the sparse constraint on the projection matrix

(i.e., increase the number of zero entries). To add sparsity

constraint on the projection matrix, we introduce an L1 penalty

to the objective function. Therefore, the final objective function

becomes

P∗ =argmin
P

‖K−XTPTPX‖F

− λ‖XTPTPX‖2F + η‖P‖1. (9)

Despite the practical necessity for sparse projection matrix,

since it is also a distance metric and the input features are

high dimensional, the matrix should be sparse as argued in

[24], [26]. Our experimental results also show that even a very

sparse projection matrix (i.e., 12% non-zero entries) can have

competitive performance for mobile visual classification.

D. Learning cross dimension correlations through RBF kernel

In eq. 9, the target kernel K can be any kernels, and we

have to specify it before learning. Because linear projection

is very similar to distance metric as mentioned in section

II-D, the target kernel should consider the theoretical benefits

of distance metric. In particular, as argued in [24], [25],

[28], distance metric captures the correlation between different

dimensions; therefore, the target kernel should also contain

cross dimension correlations. Among the popular kernels for

visual recognition (e.g., linear, χ2, intersection, RBF), RBF is

the one that captures cross dimension correlations as explained

in the next paragraph, and our experiments also show that

RBF kernel has better classification accuracy (cf. section V-B).

Therefore, we choose RBF as the target kernel.

Conventionally, the justification for RBF kernel is that it

introduces an infinite dimensional feature transformation, but

for high dimensional features, the contribution of high order

feature transformation is actually very small. Consider the

Taylor expansion of RBF kernel with the feature vectors

normalized to unit length:

e−γ‖x−y‖2

= e−γ(2−2x·y)

= e−2γe2γ
∑

i
xiyi

= e−2γ
∑

n

(2γ)n

n!
(
∑

i

xiyi)
n. (10)

Bingham [9] shows that in very high-dimensional space, two

random vectors x, y are sufficiently close to be orthogonal,

or more precisely speaking, given x, y ∈ R
D,

xTy ≈ 0 (11)

when D ≫ 0. So eq. 10 is dominated by the leading terms

e−γ‖x−y‖2

≈ c0 + c1
∑

i

xiyi + c2
∑

i,j

xixjyiyj . (12)

Notice the first two terms are the same as the linear kernel,

so the actual benefit of RBF kernel over linear kernel comes

from the third term, which introduces the correlations between

different dimensions. In other words, RBF kernel outperforms

linear kernel because it considers the correlation between

dimensions for high dimensional features, which is the same

as linear distance metric. Therefore, we can approximate the

correlation introduced by RBF kernel using the projection

matrix P as discussed in section II-D.

E. Optimization solver

The final step is to solve the optimization problem in eq.

9. Note that the problem is not convex, so the initial guess of

P affects the results. Instead of using the standard procedure

for non-convex optimization problem by starting from several

random initial guesses and selecting the one with the optimal

result, we choose the initial guess as follows.

Because the main goal of our objective function is to find

a projection matrix that preserves kernel values, which is

embedded in the first term in eq. 9, we choose P0 that

optimizes the first term. The projection matrix is guaranteed



6

Fig. 4: Example images from the three datasets.

to be optimal when K = XTPTPX, which leads to an

approximate solution for PT
0 P0:

PT
0 P0 ≈ (XT )†KX†, (13)

where X† represents the Moore-Penrose pseudoinverse. An

approximated P0 is then computed by eigenvalue decomposi-

tion. Experimental results show that the initial guess of P0 is

fairly successful.

Starting from the initial guess, we solve the optimization

problem using the L1General solver [31]. The solver is a

general solver for optimization problem with weighted L1

regularization. We choose the active-set variant of projected

scale sub-gradient algorithm.

V. EXPERIMENT

A. Experimental setup

Dataset. We evaluate the proposed method on three widely

used datasets: Scene [14], Caltech-256 [32] and ImageNet

[1] datasets. Scene dataset contains 4,485 images with 15

categories, each category consists of images from a scene,

such as “coast” or “office,” and the number of images for

each category ranges from 210 to 410. Caltech-256 dataset

contains 30,607 images in 256 object categories, and each

category contains at least 80 images. We subsample 20 cat-

egories for evaluation. For ImageNet dataset, 19 categories

from ImageNet 2011 Fall Release with the same categories

of PASCAL Visual Object Classes 2007 Challenge [33] were

selected, following the same protocol in [7] (we do not find the

synset of “potted plant”). We discard images with resolution

smaller than 500×300, which results in a total of 19,886

images. See fig. 4 for example images from the datasets.

Feature. We use VLAD [15] as the image feature, which

has been adopted in mobile visual search system [18] for

its performance and computation efficiency. Note that the

proposed method is general and can be extended to other high-

dimensional features. We use only single local feature, Dense

SIFT, throughout the experiments. For dense sampling, 20×20

patches with overlapping windows shifted by 5 pixels are used.

The codebooks are learned using hierarchical k-means with

16 centers for ImageNet and Scene. The resultant features are

2,048 dimensions. For Caltech-256, 64 centers with one level

of SPM is used, which results in 40,960 dimensions of feature.

Follow [7], the VLAD vector is first power normalized and

then L2 normalized, with α = 0.5 for power normalization.

Evaluation criteria. The performance of the algorithm

is evaluated by the classification accuracy on the test set.

Ten folds of experiments are performed, and the average

classification accuracies are reported. For Scene dataset, the

images are first divided into ten subsets with one subset for

testing and others for training in each fold of experiment. For

Caltech-256, we follow the general experiment protocol and

randomly sampled 30 images in each category for training

in each fold. For ImageNet, we randomly split the dataset

into training and test set with each category being equally

partitioned. The parameters for SVM are chosen using 5-fold

cross validation on training set, using grid search over the

range of 2−10 ∼ 210.

Compared methods. For performance comparisons, several

popular linear dimension reduction methods are also evaluated.

In particular, we evaluate unsupervised Iterative Quantization

on Principal Component Analysis (ITQ) [22] and supervised

Sequential Projection Learning for Hashing (SPLH) on Scene

dataset. Because of the similarity between KPP and MDS,

we also compare our method with two embedding methods,

Neighbor Preserving Embedding (NPE) and Locality Pre-

serving Projection (LPP). Note we only compare with linear

embedding methods because our primary goal is to handle

unseen data efficiently. For Caltech-256, we evaluate two unsu-

pervised hashing methods that shows promising performance –

Random Maximum Margin Hash (RMMH) [21] and Spherical

Hashing (SPHH) [34]; we use only linear RMMH because our

goal is a linear projection as described in section III-B. For

ImageNet, we select SPLH and SPHH which performs better

on Scene and Caltech-256 respectively. Note that we do not

binarize the signature because it does not reduce the storage

overhead of classifiers which are always real-valued.

For our proposed KPP, two variants are evaluated. We first

adopt only maximum variance regularization (KPP-MV) as

in eq. 8. We then adopt both maximum variance and L1

regularization (KPP-L1MV) by optimizing eq. 9. All classi-

fications are performed with linear SVM using LIBLINEAR

[35], except the performance evaluation on different SVM

kernels which used LIBSVM [36].

Parameter Selection. The proposed methods KPP-MV

and KPP-L1MV has three meta parameters. γ determines

the target kernel matrix and therefore determined the target

distance metric; λ determines the weight of regularization,

and η determines the sparsity of the projection matrix. We

empirically set γ to 0.5 in all experiments, which is based

on our experience that RBF kernel with γ ∼ 0.5 usually has

reasonable performance. To fit our low storage requirement,

the sparsity control parameter η is set so as less than 20% of

the matrix elements are non-zero when the target dimension

is 512. In practice, η is set to 4e−5 for Scene, 1e−4 for

Caltech256 and ImageNet. For λ, we perform grid search on

3 values (0.75, 0.5, 0.25) with Scene dataset and set it to 0.5
for all dataset.

In summary, we fixed the target distance metric and select

the sparsity control parameter based on the system constraint.

The only parameter that is selected based on performance

is the regularization control parameter, which is determined

using only one dataset and applied to others to simulate real
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TABLE I: Classification accuracy of different kernels using

2,048 dimension VLAD feature on Scene dataset. RBF kernel

has the best performance over other kernels that are widely

adopted in visual classification.

Kernel Linear RBF χ
2

Accuracy 75.23 76.64 74.56

application scenario and avoid overfitting. For the experiments

on Caltech256 and ImageNet datasets, the proposed KPP has

only one changeable parameter and is determined purely based

on density of the projection matrix. Therefore, the results

should be able to reflect the performance in the scenario of

real applications.

For SPLH and RMMH, each of them has a single meta

parameter, where η in SPLH controls the weight of supervised

and regularization terms and M in RMMH controls the num-

ber of training samples for each hash function. We perform

grid search on the meta parameter using 512 output dimensions

on each dataset respectively and choose the best parameter.

For SPHH, we use the default tolerance value ǫm = 0.1 and

ǫs = 0.15 in the original authors’ implementation.

B. Results

We first compare the performance of different kernels on

Scene dataset. The classification accuracy using 2,048 dimen-

sion features is listed in table I, which are on par with those

baselines reported in [37]. Note that for χ2 kernel, we shift

the original features to be all positive because the kernel is

designed to work with positive feature value. While χ2 kernel

is widely adopted in image classification, it does not perform

well with VLAD. And despite the promising performance of

linear kernel [5], [6], RBF kernel slightly outperforms linear

kernel (76.64% vs. 75.23%).

Next we compare the performance of different dimension

reduction methods, as shown in fig. 5. The results on Scene

are in fig. 5a, the proposed KPP can achieve similar or even

better performance than the supervised SPLH. This is because

while SPLH learns the pairwise similarity which does not

guarantee separability, KPP learns a separable data distribution

and improves the classification performance directly. Also

note that KPP-MV performs better than the original feature

with linear SVM using only 512 dimension signature. The

reason for this superior performance is that KPP captures the

inter dimensions correlation, and it optimizes all dimensions

simultaneously, thus generates more informative signatures.

The experiments on Caltech-256 are in fig. 5b, where

KPP outperforms two state-of-the-art unsupervised hashing

algorithms, SPHH and RMMH. The results on ImageNet

also confirm the superior performance of KPP, as in fig. 5c.

ITQ does not perform well in our experiments, because it is

designed to reduce quantization error in binary codes while we

use real value in our experiment setting. In fact, ITQ performs

nearly identical with PCA on Scene dataset. Although NPE

and LPP perform well in low dimension, their performances

degrade as dimension increases, so their optimal performances

are still poor even if we have enough resources for higher

dimension signatures. Note KPP is the only algorithm that
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Fig. 6: The classification accuracy degradation and the stor-

age reduction on Scene dataset under different η in eq. 9.

The projection is from 2,048 dimensions to 512 dimensions.

The classification accuracy (red curve) shows the difference

between KPP-MV and KPP-L1MV (incurred by the sparsity).

For storage reduction (blue curve), we calculate the ratio

of non-zero elements between KPP-L1MV and KPP-MV.

The classification accuracy decreases as η increases, but the

decrease is very marginal with significant storage reduction.

generates a sparse projection matrix, which is important for

mobile computing.

C. The effect of sparse projection matrix

In this section, we examine the effect of sparse constraint to

the KPP algorithm. Because the sparsity of projection matrix

is induced by the L1 penalty term, which is controlled by

its coefficient η in eq. 9, we evaluate the performance under

different η values. As shown in fig. 6, increasing the weight

of L1 penalty reduces the size of projection matrix with the

performance slightly degrades as well. But the performance

degradation is moderate, and even using a sparse projection

matrix achieves comparable performance with existing hashing

methods such as SPLH.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we address the emerging challenge of scalable

mobile visual classification. Although scalable visual classifi-

cation has been addressed in previous works, and applications

based on mobile visual recognition are gaining attention for

practical applications, the technical challenges of combining

the two have not been discussed. Our analysis shows the

intrinsic limitations of mobile visual classification and the

drawbacks of applying existing techniques on the problem.

Based on the observed issues of mobile computing, we

propose a purely native system for visual classification. To

enable scalable visual classification of native mobile systems,

we further develop a novel linear dimension reduction al-

gorithm, KPP, that extends multidimensional scaling based

on feature map methods, which also ensure the classification

performance. The space efficient system design not only makes

a native system possible but also reduces the model update

overhead, which is important for real applications.
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Fig. 5: Classification results on three widely used public datasets. (a) For Scene dataset, the dimension of original feature is

2,048. The performance of KPP outperforms the state-of-the-art supervised SPLH. (b) For Caltech-256 dataset, the original

feature dimension is 40,960, which leads to a huge covariance matrix that cannot fit in memory. Therefore, we cannot include

SPLH in comparison; instead we introduce two state-of-the-art unsupervised hashing. KPP outperforms other methods even

with fewer dimensions. (c) For ImageNet dataset, the original feature dimension is 2,048, and we include only SPLH and

SPHH which performs best in Scene and Caltech-256 respectively (except KPP). The result confirms the superior performance

of KPP. (Best seen in color)

The performance of KPP benefits from the correlations

between dimensions since it is a linear distance metric, as

discussed in [24]–[26], [28]. Because the exact correlation is

unknown, we try to learn it through approximating RBF kernel

matrix, as discussed in section IV-D. Our experimental results

on three popular datasets (Scene, Caltech-256 and ImageNet)

show that it outperforms the state-of-the-art linear hashing

algorithms widely adopted in mobile visual search, both super-

vised and unsupervised, and the dimension reduction algorithm

is compliant to mobile computation framework.

Although KPP is designed to reduce the size of classifiers

with sparse projection matrix, because the kernel matrix can

also be considered as a similarity matrix, KPP can also reduce

the computational complexity of data similarity. In fact, the

amount of data reduction also corresponds to the amount of

computation reduction. Therefore, KPP can be extend to meth-

ods which require efficient similarity estimation. For example,

in graph-based methods [38], the graph is represented by one

or multiple similarity matrices, where each matrix element

correspond to the similarity between two data instances. KPP

can accelerate the similarity computation. Combining with the

iterative graph learning algorithm, it may improve the learning

efficiency of graph-based methods.

Note that although we use RBF-kernel for similarity in this

work, the similarity may well be replaced by other distance

metric; it is even possible to incorporate label information

into the distance metric, so the unsupervised learning can

be extended to supervised learning. However, unlike the case

of RBF-kernel, there is no theoretical guarantee for arbitrary

distance metric, and their performances require further verifi-

cation.

In this work, we propose a purely native mobile visual

classification system to avoid the dependency on wireless

network. The correlations introduced by RBF kernel are,

however, not exact, and a more precise correlation should

further improve the performance. Therefore, we would like

to improve the learning process of KPP in the future, such as

a better method to learn the correlation between dimensions;

another desired improvement is to speed up the offline learning

process of projection matrix.
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J. Carré, D. Barthélémy, N. Boujemaa, J.-F. Molino, G. Duché, and
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