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Abstract—In this paper, we focus on the random forest based
concept detection system, and we intend to improve the efficiency
of the system in testing phase and to save memory and storage
usages by reducing the total number of trees (classifiers). How-
ever, reducing the tree number often results in poor performance.
In this article, we proposed a method called tree-sharing to
cope with this issue. Unlike the traditional method that treats
each concept independently, our work shares the trees among
concepts, and leave the most important ones from the view of
whole system. Experiments on different concept sets show tree-
sharing can greatly reduce the number of total trees while the
performance decreases slightly. Even in the worst case, we achieve
80% of original performance with only 5% of trees.

I. INTRODUCTION

Concept detection, recognizing the concept (usually objects,

locations, or people) of an image/video from visual content,

has been the focus of considerable interest and research over

the past years. Typically, concept detection is accomplished by

machine learning techniques, and to train a binary classifier

for each concept is a general scheme. For each concept, the

training set (positive and negative samples) is given, and we

apply the machine learning methods to learn a model from

it. The machine learning-based concept detection has been

extensively studied[1][2][3].

To further improve the concept detection performance, some

studies suggest utilizing concepts relationship. Since concepts

do not occur in isolation, the probability of the appearance

of a specific concept in the test image should relate to other

concepts[4][5], and this method is often referred as context-

based concept fusion (CBCF).

Due to the prevalence of social media, the size of im-

age/video collections to be indexed is increasing rapidly.

Thus, take efficiency problem into account while designing the

concept detection system is necessary. One of the promising

approaches is to implement the concept detection system on
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Fig. 1. Tree-sharing Scheme. A triangle denote a tree, and the thickness of
line indicates the weight of each classifier for a specific concept. If there is
no line, it means the weight is zero. Step 1. Constructing forests: The forests
are constructed independently as the traditional method. Step 2. Deciding the
weights: For each concept, we employ all constructed trees and decide the
weight for each tree through optimizing the pre-defined loss function. Step
3. Reducing the total tree number: We leave several most significant trees
(circled) according to the system budget. The system budget is assumed to
be 20% of total trees (three) in this figure.

distributed environment, such as Rong Yan’s work[6], which

is implemented on top of MapReduce.

Ensemble learning is another emerging research

topic[7][8][9]. It uses multiple weak models to form a

stronger classifier. In this scheme, the models are often

constructed with randomization, either in subsampling the

training data or selecting the attributes. The test is applied

on all constructed models, and the aggregation of responses

from all models forms the classification result. Since each

model can be treated independently in training and testing

phase, ensemble learning is suitable for parallel computing in

natural[7].

In this article, we employ the random forest for concept

detection task. Random forest[7] is one of the most effective

ensemble learning method and is widely used. We intend to

improve the efficiency in testing phase and save the memory

and storage usage by reducing the number of total trees with
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Fig. 2. Tree-sharing illustration. Each point represents a sample, and there
are three concepts in the space, C1, C2 and background. The lines denote
the classifiers constructed for distinguishing C1 and C2 from background and
the arrow indicate the positive response part. It is obvious 1, 2, 4, 6, 7, 8
classifiers can be shared with either positive or negative weight, while 3, 5
are not suitable for sharing.

low performance degradation (ie. average precision). Unlike

the traditional method that treats each concept independently,

we share the trees among concepts; thus, although the total

tree number is reduced, the serving tree number for each

concept does not decrease as many. While this intuition sounds

simple, how to share the trees is not trivial, which will be

presented in the following sections. In this paper, we call the

proposed method tree-sharing, and the words classifier, model

and tree will be used interchangeably. Note that although we

use random forest in this paper, this method could be applied

to some other ensemble classifiers.

To the best of our knowledge, it is the first attempt on

random forest to achieve this improvements by sharing trees

among the concepts. Though there are other works discussing

about sharing the classifiers, they are mostly focused on the

boosting scheme[10][11]. The sharing processes are totally

different and beyond the scope of this article.

The process of building concept detection system in our

work contains three steps. First, the forests are created in-

dependently for each concept. Traditional concept detection

system stops here, and each concept use the trees in its own

forests to perform concept detection task with equal weight,

and it is the baseline in this article. Second, we form a tree

pool with all the constructed trees, and for each concept, the

tree weights of all the pooled trees are decided. Third, we

leave several most significant trees from the view of whole

system according to the system budget. See the illustration

in Figure 1, and we assume the system budget to be 20% of

total trees (three) in this illustration. Traditionally, to obtain

the scores of a test image on these three concepts, we need

to test the image on fifteen classifiers; however, there are only

three with the proposed tree-sharing method. Thus, we can

improve the efficiency in testing phase and save the memory

and storage usage at the same time. In the experiments on

the different concept sets, we consistently find it decreases

the total tree number greatly while the performance (average

precision) drops slightly. Even in the worst case, we achieve

80% of original performance with only 5% trees left. Take

Figure 1. for illustration, we are comparing the performance

of Step 3. (using 20% of trees) to the Step 1. (using 100% of

trees).

The weight deciding process is completed through optimiz-

ing a loss function. We all know that the loss function should

be strongly related to the performance criterion (average

precision in this article), so the best function should be AP.

However, the challenge is AP cannot be optimized directly

because it depends on the ranking results and cannot be

expressed as a continuous function of the tree weight. In this

article, we introduce a probabilistic framework to cope with

this problem and finally we give a list-wise loss function which

is strongly related to AP (section III-B2). The advantages of

list-wise approach have been discussed in many works and

would not be covered here.

The proposed method seems to be benefited from leverag-

ing the correlation among concepts like CBCF, but the the

leveraged information and the goal are quite different. They

will be discussed in the next section.

This paper is organized as following. In section II, we

introduce some related works and distinguish this work from

them. In section III, we describe the proposed tree-sharing

method in detail. The experiments are shown in section IV

and the conclusions are given in section V.

II. RELATED WORK

In II-A, we are going to introduce random forest briefly.

In II-B and II-C, we introduce context-based concept fusion

(CBCF) and distinguish our work from it.

A. Random forest

Random forest is an ensemble classifier consisted of a num-

ber of decision trees. Since the performance of the ensemble

classifier is highly related to the correlation among each model

in it, the trees are often constructed with some randomization.

Generally speaking, randomization comes from two points:

(1) Subsampling the training data and each tree are grown

with different data. (2) For each internal node, selecting some

attributes for split. Besides, each internal node contains a best

split of training data. While testing, the test sample is applied

on each tree, and the final result is the aggregation of the

results from all trees. This method was first introduced in [9],

and further developed in [7].

B. Context-based concept fusion

Since concepts do not occur in isolation, the probability of

the appearance of a specific concept in the test image should

relate to other concepts. The basic idea of CBCF is to model

the probability P (Ci|S1, S2, ...) , where S1, S2, ... is the raw

probabilities P (Ci|x) generated from each concept detector,

where x is the test image/video.

In [4], W. Jiang proposed a method called a Boosted

Conditional Random Field (BCRF). In this method, they use

CRF to model the probability P (Ci|S1, S2, ...). Each node is

the concept and the edges represent the pair-wise relationships

between concepts. The BCRF method has two layers. It takes
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the posterior probabilities of the test image/video produced

from independent concept detectors as the inputs, and the

detection results for each concept are refined with these inputs

in the second layer.

In [5], Kennedy proposed a classification based reranking

method. For each concept, it first gets the ranking list of a set

of images using the baseline concept detector. Then it takes the

higher-ranked and lower-ranked images as pseudo-positive and

pseudo-negative samples, and takes the responses of images on

baseline concept detectors of related concepts as the feature to

train a SVM (support vector machine) classifier. Finally, they

considered the normalized classification score of each image

to be the refined ranking score.

C. Difference between CBCF and our work

Although our work seems to be benefited from leveraging

the correlation among concepts, there are two main differences

between CBCF and our work. First, CBCF utilize the concept

level information (the output of concept detector) while we uti-

lize the sub-concept level information (the output of individual

trees). Second, our work aims to reduce the total number of

trees, which is not the consideration of CBCF.

There are some conditions which can be dealt with sub-

concept but not concept level information. For example, there

are two concepts to be detected: Dog and outdoor. Suppose

dogs appear in half of the outdoor images; thus, the probability

of test image belonging to outdoor gives no information about

whether dogs appear. However, in our tree-sharing scheme,

there might be trees suitable for sharing between these two

concepts. Suppose there is a tree constructed from outdoor

concept that classifies the test image according to wether it

contains tornado or not. When it gives positive response, the

probability of appearance of dog in the test image should

decrease (suppose dog rarely appear with tornado) while

outdoor should increase. Therefore, this tree is useful for

both concepts, and can be used by dog concept to improve

the detection accuracy. Although the situation is much more

complex in practice since the attribute are selected randomly

for each tree, even each node, and may have no human

comprehensive meaning, we can still find the trees suitable

for sharing with carefully designed method.

III. TREE-SHARING

In this section, we are going to describe why sharing the

classifiers among concepts is feasible and how we accomplish

weight decision and classifier number reduction in detail. The

classifiers we discuss here are all binary classifiers.

A. Concept

The scenario of tree sharing is shown in Figure 2. The

classifiers 1, 2, 4, 6, 7, 8 are suitable for sharing while 3, 5

are not. More specifically, for concept 1, it can use classifiers

1, 2, 3, 4, 6, 7 with positive weight, and classifier 8 with

negative weight. Since the classifiers (trees) can be shared

among concepts, we call this method tree-sharing . Then,

for each concept, the weight of each tree needs to be decided.

After deciding the tree weights for all concepts, we can remove

the less used trees according to the system budget. Finally, The

testing result is the linear combination of the responses from

all left trees with the decided weights.

B. Deciding the tree weights
1) Formulating the problem: Given m concepts and con-

struct n trees for each of them (In figure 1., m is 3 and n
is 5).We denote the j-th tree of the i-th concept as tij . For

each concept, we would like to decide the weights of total

mn trees. We denote the weights for the i-th concept by a

mn× 1 vector wi . We will obtain wi through minimizing a

loss function Lossi(w).

wi = arg minw Lossi(w) (1)

2) Defining the loss function: For the i-th concept, we

define the scoring function to be F i
w(img) = Rspi(img)∗w,

where Rspi(img) is a 1×mn vector formed by testing img
on all mn trees, and img is the test image. Since the trees are

binary classifiers here, the mn elements are either 0 or 1. Sup-

pose we have p images I = {imgi1, imgi2, ..., imgip} and their

relevance scores r = {ri1, ri2, ..., rip}, ri1, ri2, ..., rip ∈ {0, 1} for

the i-th concept. Since the evaluation criterion in this paper is

AP (average precision), given the training images, we want to

find wi which makes F i
w optimize the AP. For convenience,

we ignore the superscript i later.

AP =
1

R
·

p∑

k=1

rk · πrel(k)

π(k)
(2)

Where R is the number of relevant images in I , π is the

permutation according to scoring function Fw , πrel(k) is the

rank of the k-th image in relevant images in I , π(k) is the

rank of the k-th image in all images in I . Since rk is either 0
or 1,we only need to consider the relevant images, and

πrel(k)
π(k)

is simply the precision at π(k).
It is challenging to maximize the above equation for the

reason that the dependence of image ranks on Fw is not

expressed explicitly (w does not appear in this equation).

To overcome this problem, we introduce a claim[12] and a

probabilistic framework inspired by [13][14].

Claim 1: R-precision is approximately AP
In [12], the author states that under some reasonable as-

sumptions, the R- precision approximates the area under the

precision-recall curve. Since AP is also an approximation

of the area under the precision- recall curve. R-precision is

approximately AP. In [12], they have confirmed this claim on

the TREC8 collection.
According to Claim 1, we maximize the R-precision instead

of AP. The R-precision is computed as following:

RP = Rel(R)/R =
1

R
·

p∑

k=1

rk · I(π(k) ≤ R) (3)

Where Rel(R) means the number of relevant images in the R
first ranked images, and I is an indicator function. With this

equation, we avoid dealing with
πrel(k)
π(k) in equation (2).
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Fig. 3. Relative improvement of 10 concepts experiment. Different colors of bar indicate the ratio of employed trees in tree-sharing method. Left: The

relative improvement with respect to baseline method employing 100% of constructed trees (
AP of Tree−sharing (using various ratio of trees)

AP of Baseline (using 1000 trees)
). Right:

The relative improvement with respect to using baseline method employing the same percentage of total trees as tree-sharing (take some classifiers off)

(
AP of Tree−sharing (using various ratio of trees)

AP of Baseline (using the same ratio of trees as tree−sharing)
).

To express the dependence of image ranks on Fw explicitly,

we maximize its expectation instead.

ε(RP ) =
1

R
· ε(Rel(R)) =

1

R
·

p∑

k=1

rk · Pr(π(k) ≤ R) (4)

In equation (4), the probability Pr(π(k) ≤ R) needs to be

defined. Besides, we model Pr(π|Fw) to explicitly relate

image ranks to Fw. We conform to [13], and model Pr(π|Fw)
using equation (5).

Pr(π|Fw) =

1

Z(Fw)
· exp[

p∑

k=1

∑

l:π(l)>π(k)

(Fw(imgl)− Fw(imgk))]
(5)

Then, we can derive lemma 1.

Lemma 1: The expectation of the rank of the l-th image
can be approximate with the equation

ε(π(l)) ≈ 1 +

p∑

k=1

1

1 + exp[2(Fw(imgl)− Fw(imgk))]
(6)

The proof is provided in [13].

Finally, we model Pr(π(k) ≤ R) with a logistic function

L(α(R− ε(π(k)))) , and the equation is as following:

ε(RP ) ≈ 1

R
·

p∑

k=1

rk · L(α(R− ε(π(k)))) (7)

Replacing ε(π(k)) in equation (7) with equation (6), we can

see it clearly that the ε(RP ) is now a function of w. We

define the loss function Lossi(w) = −ε(RP ). Therefore,

minimizing the loss function is strongly related to maximizing

the average precision. We simply set the α in equation (7) to

1.0 here, and solve this optimization problem with the active

set algorithm.

C. Reducing the tree number

To reduce the tree number, we need to measure the signif-

icance of each tree from the view of whole system. After

deciding the weights, we get w1,w2, ...,wm. We gather

these weight vectors to form a mn × m matrix W =
[w1,w2, ...,wm]. Each row of this matrix is consisted of the

weights of each tree on all concepts. Since the absolute value

of the weight can be considered as how important the tree is for

a specific concept, we take the L1-norm of each row vector

as the significance of each tree. Then, we sort the trees by

their significances and leave the most important ones according

to the system budget. In testing phase, the final result of a

test image on each concept is the linear combination of the

response of the left trees with the computed weights.

IV. EXPERIMENTS

We present two sets of experiments in this section, (a) The

relative performance of tree-sharing with respect to baseline

method. (Section IV-B and IV-C) (b) The ontology constructed

using the computed weight vector w1,w2, ...,wm. (Section

IV-D).

A. Experimental settings

All experiments are conducted on the subset of Caltech-

256 database[15]. To examine the consistent improvement, we

experimented on two different concept sets. One has ten and

another has twenty categories (concepts). The visual feature

we used is SIFT[16] with Hessian-affine region detector and

one hundred trees were constructed for each concept. The

training set for each concept are formed by sampling thirty

images from its category and five hundred from background.

However, since we don’t want the training set to be too

unbalanced, we actually use only two hundred and forty of

the five hundred background images to construct the trees.

The test set of each concept consists of twenty-five images

from its concept, and twenty-five images from background.

AP is the performance criterion in these experiments. Besides,

for each concept, we use its whole training set for deciding

the tree weights in tree-sharing method. Since part of the

training sets are used for constructing the trees of its concept,

using the training set for weight decision would prefer the

trees constructed with it. To alleviate this problem, we can

multiply the responses of the trees of its concept by a constant

(between 0 and 1). However, in these experiments, we simply
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Fig. 4. Relative improvement of 20 concepts experiment. Different colors of bar indicate the ratio of employed trees in tree-sharing method. Up: The relative
improvement with respect to baseline method, which uses 100% of constructed trees. Down: The relative improvement with respect to baseline method, which
employs the same percentage of total trees as tree-sharing (take some classifiers off).

set the constant to 1 because we think it is also reasonable to

prefer the trees constructed with its own training set. Matlab

optimization tool is employed to minimize the loss function.

In addition, all the numbers reported here are the average of

ten runs.

B. Relative performance on ten concepts

The ten concepts we choose here are dog, horse, zebra,

helicopter, fighter-jet, motorbikes, car-side, dolphin, goose and

cactus. The experiment of ten concepts is shown in Figure 3.

Figure 3. Left. shows tree sharing is capable of reducing the

tree number greatly without serious performance loss. Even

in the worst case (car-side), the performance drops about 15%

while there are only 5% trees being used.

From Figure 3. Right, we see tree-sharing benefit all con-

cepts more or less. Note we get more improvement while the

used tree ratio is decreasing. It is because the baseline method

is much more sensitive to the decreasing tree number. Imagine

while there are only 5% of trees left, each concept has only 5

trees without tree-sharing, but there are still 50 trees for each

concept with tree-sharing method.

C. Relative performance on twenty concepts

The twenty concepts are the previous ten and bulldozer, fire-

truck, giraffe, goat, school-bus, snowmobile, minaret, pyramid,

tower- pisa and airplane. In twenty concepts experiment,

we get results consistent with the previous one (Figure 4).

Note that we seem to get more improvement on the first

ten concepts than the previous experiment. It is because the

concept number is twice now; thus, the number of total tree

and the number of the trees serving for each concept become

twice. More specifically, the number of trees serving each

concept is independent of concept number with traditional

method while it is in proportion to concept number with

the tree-sharing method. This implies tree-sharing prefer large

number of concepts in nature, and it should be an advantage

for large-scale problem.

D. Constructing the ontology

In addition to reducing total tree numbers in the system, we

show that the computed weights can be used to construct the

concept ontology automatically, which is useful for represent-

ing the relationships among concepts.

Similar concepts should have similar weight distributions on

the trees. Therefore, we can take the computed weight vectors

w1,w2, ..., and wm as the representation of each concept,

and perform the agglomerative clustering on them to construct

the ontology. We adopt the cosine distance to be the distance

metric because the behavior of a concept detector is invariant

to the scale of weights. (Multiplying the weight vector of a

concept by a positive constant doesn’t affect the behavior of

the concept detector). Figure 5. shows the clustering result

on twenty concepts. For convenience, we set a threshold 0.78,

and the concepts in the same cluster are marked with the same

color.

It is reasonable to see that dog, goat, goose, and horse in the

same cluster, fire-truck and school bus be together, helicopter

be clustered with fighter-jet, and motorbikes and car-side in

the same cluster. Nevertheless, it seems wiered to cluster

cactus, bulldozer and giraffe, or zebra and tower-pisa together.
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Fig. 5. Up: The constructed ontology of 20 concepts. Down: The images sampled form cactus, bulldozer, giraffe, zebra and tower-pisa. Note the similar
background in the first three images and the interleaved black and white patterns in the last two. These make the first three and the last two visually related.

However, after sampling some images from these concepts, we

found they are actually visually related. See Figure 5.

Compared with ontology built by human expert, this method

may discover the concepts that are visually related.

V. CONCLUSIONS

This paper focus on random forest based concept detection

system, and we enhance the efficiency in testing phase and

save the memory and storage usage by the proposed tree-

sharing method. To the best of our knowledge, it is the

first attempt on random forest to achieve this improvements

by sharing the trees among concepts. The proposed method

greatly alleviate the impact of reducing the tree number. We

experiment on different subsets of Caltech-256 to examine

this method, and it shows we can achieve 80% of original

performance with only 5% trees. Besides, we find it performs

better in twenty concepts than ten with the same ratio of trees

used. The reason is the serving trees for twenty concepts are

twice than ten concepts. It implies this proposed method is

suitable for large number of concepts detection task in nature.
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