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Abstract—Recently, several gaussian like image represen-
tations are proposed as an alternative of the bag-of-word
representation over local features. These representations are
proposed to overcome the quantization error problem faced
in bag-of-word representation. They are shown to be ef-
fective in different applications; the Extended Hierarchical
Gaussianization reached excellent performance using single
feature in VOC2009, Vector of Locally Aggregated Descriptors
and Fisher Kernel reached excellent performance using only
signature like representation on Holiday dataset. Despite their
success and similarity, no comparative study about these
representations has been made. In this paper, we perform a
systematic comparison about three emerging different gaussian
like representations: Extended Hierarchical Gaussianization,
Fisher Kernel and Vector of Locally Aggregated Descriptors.
We evaluate the performance and the influence of feature
and parameters of these representations on Holiday and
CC Web Video datasets, and several important properties
about these representations have been observed during our
investigation. This study provides better understanding about
these gaussian like image representations that are believed to
be promising in various applications.
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I. INTRODUCTION

In recent years, local feature, or as it is widely described

as image keypoint, has emerged as the most powerful visual

feature in both image classification and retrieval. Keypoints

are local image patches that contain important visual in-

formation. These keypoints are represented by keypoint

descriptors, where 128 dimensional SIFT descriptor [1] is

generally used. These local features have proved to be

discriminative, but since the number of keypoints in each

image is usually different, they do not form a compact

representation for images and videos and hence is not

efficient enough to apply to large databases.

To form a compact representation for images, the “Bag of

Words” (BoW) [2] method is widely used. In BoW method,

keypoints are represented by a set of basis keypoints, or as

they are generally called “visual vocabulary.” Each keypoint

is assigned to a particular visual vocabulary according

to their visual similarity. By doing so, keypoints become

analogous to words in text domain, and images become the

analogy of documents. Each image can now be represented

by a vector containing the weighted visual word count, as

documents in text domain information retrieval (IR). The

BoW method has proved its efficacy and is adopted in many

state of the art classification or retrieval systems.

A well known problem of BoW is that quantization error

leads to information loss and limit the performance [3].

Some studies try to overcome the problem by adopting

image representations that are conceptually different from

BoW. While BoW method is an analogy of vector space

model in IR, language model [4] is also analogized to

image representation and introduces gaussian like image

representations. As in language model, assume the keypoints

of an image are generated by an unknown probability dis-

tribution, the problem of image representation becomes how

to capture and represent the probability distribution. Several

different image representations following this probability

point of view has been introduced, including the Extended

Hierarchical Gaussianizatoin (EHG) [5], Fisher Kernel (Fk)

[6] and Vector of Locally Aggregated Descriptors (VLAD)

[7]. These gaussian like representations exhibited excellent

performance on various benchmarks. The classification ac-

curacy using EHG with simple nearest centroid classifier is

comparable to the state of art result using BoW and coplicate

nonlinear classifier on Caltech256 dataset, and achieved top

performance in the Visual Object Classes Challenge 2009

(VOC2009). Fk and VLAD show excellent performance

on Holiday and UKB dataset, using only simple vector

difference in retrieval.

Despite their success, no comparative study about these

similar representations has been conducted. While previous

works mainly focus on introducing new representations and

the comparison with BoW, the similarity and difference of

these representations have not been investigated. In this pa-

per, we perform a systematic comparison on the three gaus-

sian like image representations and investigate the influence

of feature and structural parameters on the performance. The

goal is to link these representations together, and provides

further understanding about them. We try to figure out the

best combination of feature, parameters and representation.

We also provide a comparison on the time efficiency of

representation formation.

The evaluation is carried out on two public benchmarks,



including the CC Web Video [8] dataset for video retrieval

and the Holiday [9] dataset for image retrieval. The ex-

periments lead to two conclusions: (1) no singe gaussian

like representation outperforms others in all situations; (2)

VLAD is the most time efficient representation. We also

observed several important properties about these represen-

tations.

In Section 2, we briefly review the existing work on image

representation based on local feature. We describe the three

different representation in Section 3. The experiment result

is in Section 4, with more detail discussion in Section 5.

II. RELATED WORK

Bag-of-words representation is an early attempt to gen-

erate compact image representation [2] over local feature.

Beside BoW, gaussian like representations serve as another

promising direction, which do not suffer from quantiza-

tion error. These representations describe the image on

the basis of keypoints distribution. Fk is the pioneer of

these representations [6], which describes images by the

gradient of the likelihood of image keypoints. EHG [5]

represents images directly by their keypoints distribution

using gaussian mixture model (GMM). The VLAD [7] is

a simplification of Fk.

III. GAUSSIAN LIKE IMAGE REPRESENTATIONS

Three gaussian like image representations are considered

in our evaluation, the Extended Hierarchical Gaussianiza-

tion, Fisher Kernel and Vector of Locally Aggregated De-

scriptors. In this section, we will briefly introduce the three

representations and the relationship between them.

A. Background Model

Similar to language model, a background model that

describes the overall keypoint distribution of all images is

necessary, as illustrated in Figure 1. In both Fk and EHG,

a gaussian mixture model (GMM) is used to capture the

background model, while it is simplified in VLAD. The

background model is similar to the ”visual vocabulary,”

where each gaussian component of the background GMM

describes the distribution of a group of similar keypoints.

There are three main reasons for its necessity.

• Provide efficient image comparison method: Al-

though Kullback-Leibler divergence (KLD) may be

used to measure the similarity between two arbitrary

distribution, the evaluation of KLD requires a numerical

integral over the entire feature space and is very inef-

ficient. However, if image specific GMMs are adapted

from the background GMM, under the assumption that

image specific distributions do not deviate far away

from the background distribution, efficient comparisons

between two GMMs may be achieved by considering

one pair of gaussian components at a time where the

Figure 1. An overview of the general process for extracting gaussian like
image representations.

pair of components come from the same background

component.

• Smoothing for unseen data: As mentioned before,

each gaussian component describes the distribution

of a particular kind of keypoints. Since some kind

of keypoints might be missing in a particular image,

smoothing using background distribution is necessary.

• Avoid over fitting: The number of keypoints in one

image may not be sufficient to learn a GMM, which

requires the determination of hundreds or thousands of

variables. Background model can constraint the image

specific GMM and avoid overfitting.

The background model can be learned using EM algorithm

under maximum likelihood criterion. And for simplicity, the

covariance matrices of GMM are assumed to be diagonal in

both Fk and EHG.

B. Extended Hierarchical Gaussianization (EHG)

Given the background model, EHG [5] learns a image spe-

cific GMM under Maximum A Posteriori (MAP) criterion.

The prior of image specific GMM is assumed to be

(wa,1, · · ·, wa,K) ∼ Dir(Tw0,1, · · ·, Tw0,K) (1)

µa,i ∼ N(µ0,i,Σ0,i/r), k = 1 : K (2)

given there are K gaussian components in GMM, where

N stands for normal distribution and Dir for dirichlet

distribution. µa,k is the mean of the k-th gaussian compo-

nent from image a (0 stands for background), Σa,k is the

covariance matrices, wa,k is the weight of the k-th gaussian

component and (r, T ) are two empirical parameters. The

MAP estimation can be obtained via EM algorithm.

After the image specific GMM is learned, a compact

representation that allows efficient evaluation of the differ-

ence of GMMs is then extracted. In EHG, the difference

between two GMMs is defined as the upper bound of

the symmetrized KLD obtained using log-sum inequality.

Under the assumption Σa,i ≈ Σ0,i, the upper bound can be



approximated as

Us(ga, gb) ≈
∑K

i=1
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According to equation 3, the bound is divided into two parts,

with one being the difference of means and the other being

the difference of variance. A super-vector representation for

the image specific GMM can be obtained as φa = [ma; va]
where

ma = [w
1/2
0,1 Σ
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is the mean super-vector, denoted by EHG-m,
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is the variance super-vector denoted by EHG-c. The L2

distance of the super-vector representation will reduce to the

approximated KLD upper bound, so the difference of two

image can be evaluated efficiently, comparing to the KLD

integral.

C. Fisher Kernel (Fk)

In Fk [6], instead of extracting information from image

specific GMM, the information about how to update the

background GMM is used to represent the image. In prac-

tice, the information is obtained from the derivative with

respect to means and variances of the log-likelihood function

of the image. The detailed formulation is

∂L(X |λ)

∂µd
i

=
∑N

t=1
γt(i)[

xd
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0,i

(σd
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2
] (6)
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−
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given there are N keypoints in the image, where γt(i) is the

occupancy probability

γt(i) = p(i|xt, λ) =
w0,ipi(xt|λ)

∑K
j=1

w0,jpj(xt|λ)
(8)

where d denotes the d-th dimension of the SIFT descriptor,

xt represents the keypoint descriptor of keypoint k, and

L(X |λ) is the log-likelihood function with λ denoting

the background GMM variables. Derivative with respect to

weight wi is not included in our evaluation, because it is

less informative than the means and variances in our early

test.

Method mAP Retrieval Time

CHSIG [8] 0.891 1 sec
HIRACH [8] 0.952 7 days

QIP [11] 0.951 1.7 days
TNP [11] 0.935 3.1 hours

VLAD 0.958 49.5 sec

Table I
COMPARING CC WEB VIDEO RESULT WITH EXISTING METHODS. THE

VLAD WITH 64 CENTERS IS USED IN COMPARISON.

D. Vector of Locally Aggregated Descriptors (VLAD)

VLAD is a simplification of Fk [7]. The evaluation of Eq.6

in Fk can be viewed as a weighted sum of the normalized

difference of every keypoints with respect to each centers,

where weight is given by the occupancy probability γt(i)
and normalization is done by variance σ0,i. VLAD simplifies

Fk mean vector as followed:

• Ignore normalization. σ0,i is set to 1 reqardless of i.
• Binary weight. γt(i) becomes a binary function of t

and i, where γt(i) equals to 1 iff center i is the nearest

center to keypoint t in feature space and equals to 0
otherwise.

VLAD therefore does not require the estimation of back-

ground GMM, but only need the cluster centers of keypoints,

as if in BoW method. Also, the Fk variance vector is ignored

in VLAD.

IV. EXPERIMENT RESULTS

In this section, we present the result of the three different

representations on different datasets. For Fk and EHG, the

performance of using only mean vector (-m) and variance

vector (-c) are also included. The two local features we used

include the Hessian affine-invariant (HA) region detector

and dense sampling, both described by SIFT descriptor.

The original 128-dimension SIFT descriptor is used, without

performing any dimension reduction. For dense sampling,

the VLFeat package [10] is used for feature extraction.

In all datasets, the performance of using 8, 16 and

64 gaussian components (or cluster centers in VLAD) is

evaluated. The dimension of VLAD is 128 times the number

of centers. Because EHG and Fk contain both means and

variances in the representations, the dimension is twice that

of VLAD. The dimension of representations involved in the

experements thus range from 1024 to 16384.

A. Holiday Dataset

The INRIA Holiday dataset [9] is a collection of 1491

holiday images, with 500 of them are used as queries. The

performance is measured by the mean Average Precision

(mAP). The image resolution in the dataset is higher than

most existing datasets and daily used images, so except

evaluating the performance using original images, we also



evaluate the performance on scale-down images. Overall,

there are four different settings for local feature extraction:

• Original image + Hessian Affine-invariant (HA)

• Original image + Dense Sampling (Dense)

• Scale down image (400×300) +

Hessian Affine-invariant (HA Scale)

• Scale down image (320×240)

+ Dense Sampling (Dense Scale)

The size of scale down images is different for HA Scale and

Dense Scale so the average keypoints number is the same

in the two settings. For dense sampling, 20×20 patches with

overlapping windows shifted by 5 pixels is used. Notice for

dense sampling using original images, many image patches

contain only small variation and are not informative. And for

Hessian affine-invariant with scale down images, the number

of keypoints in each image has a large variation, where some

images have only less than ten keypoints.

Table II shows the result of our experiment. For compar-

ison, the state of the art result using BoW representation

[12] is listed in Table III, in which Hessian affine-invariant

feature is used. We can see that VLAD and Fk outperform

BoW when the dimensions are at the same order: both of

them reach mAP higher than 0.5 using only 2048 dimension

(HA, k=16), where the mAP of BoW is only 0.414 at 1k

dimension and 0.446 at 20000 dimension. While VLAD

reaches the mAP of 0.541 using 8192 dimension, BoW

needs 200000 dimension, which is 24 times higher than

VLAD, to reach the same performance.

The best representation for each setting are not the same.

For HA and Dense Scale, VLAD has the best performance

using 64 centers. For HA Scale and Dense, Fk has the

best performance, with 16 and 64 gaussian components

respectively. EHG does not perform as well as VLAD and

Fk in most settings, but performs pretty well in Dense Scale,

which is nearly as good as the best result of the setting.

When using only mean vector (Fk-m) or variance vector

(Fk-c) of Fk, the performance of Fk-m is usually better

and more stable. As the number of gaussian component

increases, Fk-c becomes more discriminative, while Fk-m

has no consistent trend in different settings. For EHG, the

performance of mean vector and variance vector is more

similar, comparing with that of Fk.

B. CC Web Video Dataset

CC Web Video dataset [8] is a collection of 12790

web videos from YouTube, Google and Yahoo, which is

collected using 24 distinct search queries. For each query,

one seed video is used as an example for near-duplicate

video retrieval. The mAP of the 24 queries is used as

the performance measurement, with the retrieval time being

another important criterion.

In our evaluation, we form a single gaussian like repre-

sentation for each video as if it is an image. We first extract

local features from each keyframe. The keypoints from all

method k mAP

BoW 1,000 0.414
BoW 20,000 0.446
BoW 200,000 0.549

binary BoW 20,000 0.458
binary BoW 200,000 0.554

Table III
RESULT FOR THE STATE OF THE ART SIGNATURE BASED METHOD ON

HOLIDAY DATASET [12]. K IS THE SIZE OF VISUAL VOCABULARIES.

HA Dense
k=8 k=16 k=64 k=8 k=16 k=64

VLAD 0.932 0.937 0.948 0.927 0.951 0.958

Fk 0.898 0.898 0.897 0.886 0.896 0.903

Fk-m 0.894 0.895 0.892 0.897 0.903 0.910

Fk-c 0.825 0.843 0.869 0.830 0.851 0.868

EHG 0.906 0.891 0.860 0.947 0.944 0.903

EHG-m 0.918 0.908 0.869 0.942 0.952 0.933

EHG-c 0.898 0.883 0.856 0.946 0.938 0.889

Table IV
MAP OF CC WEB VIDEO DATASET. K IS THE NUMBER OF GAUSSIAN

COMPONENTS (OR CENTERS) IN FEATURE REPRESENTATION.

the keyframes of the video are then aggregated together, as if

they were from the same image. The video representation is

then computed like that of images. By doing so, we represent

the video using its keyframes, where these keyframes can be

imagined as being combined together into a large image. For

dense sampling, 24×24 patches with overlapping window

shifted by 6 pixels is used to keep the average number of

keypoints of each video comparable with that of Hessian

affine-invariant.

Table IV shows the result of our experiment, and the

result of other state of the art methods are listed in Table I.

Both VLAD and EHG can achieve comparable performance

with HIRACH under suitable setting, while Fk usually has

inferior performance. For both Hessian affine-invariant and

dense sampling feature, VLAD has the best performance,

while the mAP of EHG-m is comparable with VLAD when

dense sampling is used.

Since a video wise compact vector representation is used,

we only have to evaluate the L2 distance between different

videos during retrieval. For methods listed in Table I, except

the simple color histogram (CHSIG), all other methods

require complicated computation during retrieval and have

longer retrieval time. The VLAD outperforms other methods

in both mAP and retrieval time.

C. Computation Time Analysis

In this section, we examine the computation time for rep-

resentation formation given local features and background

models. The time for background model learning is not

considered because it can be evaluated off-line. We focus

on two factors:



HA HA Scale Dense Dense Scale
k=9 k=16 k=64 k=8 k=16 k=64 k=8 k=16 k=64 k=8 k=16 k=64

VLAD 0.516 0.502 0.541 0.411 0.398 0.285 0.395 0.460 0.490 0.416 0.484 0.510

Fk 0.482 0.520 0.535 0.446 0.480 0.474 0.451 0.482 0.513 0.379 0.423 0.488

Fk-m 0.507 0.524 0.471 0.359 0.320 0.096 0.436 0.463 0.491 0.402 0.440 0.497

Fk-c 0.260 0.332 0.424 0.164 0.263 0.350 0.296 0.371 0.428 0.154 0.247 0.369

EHG 0.457 0.443 0.413 0.309 0.220 0.094 0.330 0.387 0.441 0.424 0.462 0.467

EHG-m 0.468 0.456 0.458 0.341 0.321 0.179 0.297 0.364 0.428 0.382 0.414 0.505

EHG-c 0.444 0.426 0.369 0.264 0.166 0.067 0.349 0.400 0.430 0.441 0.466 0.427

Table II
MAP OF HOLIDAY DATASET. K IS THE NUMBER OF GAUSSIAN COMPONENTS (OR CENTERS) IN FEATURE REPRESENTATION.

• The number of gaussian components

• The number of keypoints in each image

We perform the experiments on the Holiday dataset using

50 randomly chosen images. Dense sampling is used, with

20×20 patches and 5 pixels window shift. The experiments

are run on a single machine with Intel Xeon Processor 5140

and 8GB of memory.

To demonstrate the effect of gaussian component num-

ber, all images are scale down to 320×240. The average

computation time for the 50 images is reported, with the

number of gaussian components being 8, 16, 64, 128 and

256 respectively. The result is in Figure 2. The computation

time of Fk is the longest, followed by EHG. VLAD is the

most time efficient representation. Also notice the compu-

tation time for Fk and EHG grows linearly with respect to

the number of gaussian components, while that of VLAD

remains about the same regardless of the number of centers.

This nice property of VLAD is due to the tree structure used

for finding the nearest center of each keypoint.

We also examine the computational time increase with

respect to keypoint numbers. Because the number of key-

points in dense sampling is proportional to the image size,

we compute the representations of the same 50 images with

different size ranging from 320×240 to 2560×1920. The

result is shown in Figure 3. We can see the computation time

of all three representations increase linearly with respect to

keypoints number, but with different slope. VLAD has the

smallest slope, meaning it is more efficient for large images

or long videos.

V. DISCUSSIONS

Several interesting properties of the three representations

have been observed during our experiments, and will be

discussed in this section.

A. Parameters of EHG

There are three empirical parameters when learning the

image specific GMM in EHG. In previous work [5], the

effect of the parameters was not discussed. In our exper-

iments, we notice an unneclectable dependency between

the performance and parameters. More precisely, although

T , which determines the prior of wa,i, has no significant

effect on the retrieval result, the parameter that determines

the variance of mean distribution, r, is important for the

performance.

According to our experiments, the performance of EHG

is poor when we fixed r to a small value such as 1, but

improves as r becomes larger, which implies the means of

image specific GMM is close to the background means. In

practice, we set r to a constant times of the number of

keypoints the image has, where the constant is adjusted

in a small range from 1 to 10. Because normal images

usually have more than a hundred of keypoints, the prior

distributions of means are actually very narrow.

B. MAP Process of EHG

The EM algorithm used to obtained the MAP estimation

may takes several iterations before convergence. However, it

is not necessary to wait until the EM algorithm converges be-

fore we extract information from the image specific GMM.

Actually, the performance of EHG is no better or even worse

when more than 1 iteration of EM is allowed. So in practice,

we perform only 1 iteration of EM algorithm when learning

the image specific GMM. This further limit the deviation of

image specific GMM from the background GMM.

In conclusion, the performance of EHG is dependent on

the distance between image specific GMM and background

GMM. Because EHG uses the approximated upper bound

of KLD to evaluate the difference between two images for

the sake of efficiency, the performance is dependent on how

good the approximation is. When the image specific GMM

deviates far from the background GMM, the approximation

is poor and degrades the performance.

C. EHG with Dense Sampling

While it is widely accepted that dense sampling usually

yields better performance, we notice that dense sampling

is especially suitable for EHG. For other representations

like VLAD, the difference between Hessian affine-invariant

and dense sampling is smaller than that of EHG, and

Hessian affine-invariant sometimes even outperforms dense

sampling. For EHG, the performance of dense sampling is

always better, signifying that EHG works better with dense

sampling.
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D. Differences of Fk and VLAD

Although VLAD is a kind of simplification of Fk, there is

a significant difference between the two representations. The

difference comes from the influence of each keypoint on the

final representation. In Fk, given a gaussian component, the

effect of each keypoint is weighted by a gaussian function.

Therefore, keypoints that are close to gaussian center in

feature space will be emphasized and are more important for

the representation. For VLAD, the weighting function will

ignore keypoints closer to other centers, while it gives the

same weight for all keypoints that belong to the same center.

As a consequence, the representation will be dominated by

keypoints that are near the border of clusters.

This difference makes Fk more robust to noisy data, where

the weighting may unweighed the noise. This can be seen in

the result of Holiday dataset, where Fk outperforms VLAD

in the two more noisy settings.

VI. CONCLUSION

Several gaussian like image representations have been

proposed, and are proved to be effective in various bench-

marks. In this paper, we perform a systematic comparison

between them. The study provides an illustration about the

similarities and differences of these representations; and

several observations have been discussed. The performance

of these image representations depends on the feature and

image quality, as well as the number of centers used. In our

experiment, no single representation seems to significantly

outperforms others in all situations, when only the perfor-

mance is considered. But when the time for representation

formation is also considered, VLAD turns out to be a more

efficient representations, and is therefore more suitable for

large images or long videos.
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