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Abstract. Current approaches for activity recognition often ignore con-
straints on computational resources: 1) they rely on extensive feature
computation to obtain rich descriptors on all frames, and 2) they as-
sume batch-mode access to the entire test video at once. We propose
a new active approach to activity recognition that prioritizes “what to
compute when” in order to make timely predictions. The main idea is to
learn a policy that dynamically schedules the sequence of features to com-
pute on selected frames of a given test video. In contrast to traditional
static feature selection, our approach continually re-prioritizes compu-
tation based on the accumulated history of observations and accounts
for the transience of those observations in ongoing video. We develop
variants to handle both the batch and streaming settings. On two chal-
lenging datasets, our method provides significantly better accuracy than
alternative techniques for a wide range of computational budgets.

1 Introduction

Activity recognition in video is a core vision challenge. It has applications in
surveillance, autonomous driving, human-robot interaction, and automatic tag-
ging for large-scale video retrieval. In any such setting, a system that can both
categorize and temporally localize activities would be of great value.

Activity recognition has attracted a steady stream of interesting research [1].
Recent methods are largely learning-based, and tackle realistic everyday activi-
ties (e.g., making tea, riding a bike). Due to the complexity of the problem, as
well as the density of raw data comprising even short videos, useful video rep-
resentations are often computationally intensive—whether dense trajectories,
interest points, object detectors, or convolutional neural network (CNN) fea-
tures run on each frame [2–8]. In fact, the expectation is that the more features
one extracts from the video, the better for accuracy. For a practitioner wanting
reliable activity recognition, then, the message is to “leave no stone unturned”,
ideally extracting complementary descriptors from all video frames.

However, the “no stone unturned” strategy is problematic. Not only does it
assume virtually unbounded computational resources, it also assumes that an
entire video is available at once for batch processing. In reality, a recognition
system will have some computational budget. Further, it may need to perform
in a streaming manner, with access to only a short buffer of recent frames.
Together, these considerations suggest some form of feature triage is needed.
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Yet prioritizing features for activity in video is challenging, for two key rea-
sons. First, the most informative features may depend critically on what has
been observed so far in the specific test video, making traditional fixed/static
feature selection methods inadequate. In other words, the recognition system’s
belief state must evolve over time, and its priorities of which features to extract
next must evolve too. Second, when processing streaming video, the entire video
is never available to the algorithm at once. This puts limits on what features
can even be considered each time step, and requires accounting for the feature
extractors’ framerates when allocating computation.

In light of these challenges, we propose a dynamic approach to prioritize
which features to compute when for activity recognition. We formulate the prob-
lem as policy learning in a Markov decision process. In particular, we learn a
non-myopic policy that maps the accumulated feature history (state) to the sub-
sequent feature and space-time location (action) that, once extracted, is most
expected to improve recognition accuracy (reward) over a sequence of such ac-
tions. We develop two variants of our approach: one for batch processing, where
we are free to “jump” around the video to get the next desired feature, and
one for streaming video, where we are confined to a buffer of newly received
frames. By dynamically allocating feature extraction effort, our method wisely
leaves some stones unturned—that is, some features unextracted—in order to
meet real computational budget constraints.

To our knowledge, our work is the first to actively triage feature compu-
tation for streaming activity recognition. While recent work explores ways to
intelligently order feature computation in a static image for the sake of object
or scene recognition [9–16] or offline batch activity detection [17], streaming
video presents unique challenges, as we explain in detail below. While methods
for “early” detection can fire on an action prior to its completion [18–20], they
nonetheless passively extract all features in each incoming frame.

We validate our approach on two public datasets consisting of third- and
first-person video from over 120 activity categories. We show its impact in both
the streaming and batch settings, and we further consider scenarios where the
test video is “untrimmed”. Comparisons with status quo passive feature extrac-
tion, traditional feature selection approaches, and a state-of-the-art early event
detector demonstrate the clear advantages of our approach.

2 Related Work

Activity recognition and detection Recognizing activities is a long-standing
vision challenge [1]. Current methods explore both high-level representations
based on objects, attributes, or scenes [3, 4, 8, 21, 22], as well as holistic frame-
level CNN descriptors [4–7]. Some focus on recognition in a specific domain,
such as egocentric video [23,24]. Our approach is a general algorithm for feature
prioritization, and it is flexible to the descriptor type; we demonstrate instances
of both types in our results. Unlike traditional activity recognition work, we
account for 1) bounded computational resources for feature extraction and 2)
streaming (and possibly untrimmed) input video.
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Much less work addresses activity detection, which requires both categorizing
and localizing an activity in untrimmed video, though new benchmarks aim to
call more attention to the problem [25, 26]. Common strategies are sliding tem-
poral window search [27–29] or analyzing tracked objects [30–33]. While some
tracking-based methods permit incremental computation and thus can handle
streaming video (e.g., [30]), they are limited to activities well-defined by a mov-
ing foreground subject. “Action-like” space-time proposals [34–37] and efficient
search methods [38, 39] can avoid applying classifiers to all possible video sub-
volumes, but they do not prioritize feature computation. Contemporary to our
work [40], a recurrent neural network that learns to predict which frame in a
video to analyze next for offline action detection is proposed in [17]; its policy
is free to hop forward and backward in time in the video to extract subsequent
features, which is not possible in the streaming case we consider. Furthermore,
our method pinpoints feature extraction requests to include not just when in
the video to look for a single type of feature [17], but also where in the frame
to look and which particular feature to extract upon looking there. Unlike our
approach, all the above prior classifier-based methods assume batch access to
the entire test video. Furthermore, with the exception of [17], they also assume
features can be extracted on every frame.

Early event detection The goal in “early” event detection is for the detec-
tor to fire early on in the activity instance, enabling timely reactions (e.g., for
human-robot interactions [18] or nefarious activity in surveillance [19]). In [18],
a structured output approach learns to recognize partial events in untrimmed
video. Other methods tackle trimmed streaming video, developing novel integral-
histograms that permit incremental recognition [19], or an HMM model that pro-
cesses more frames until its action prediction is trusted [20]. In a sense, “early”
detectors eliminate needless computation. However, the goals and methods are
quite different from ours. They intend to detect an action before its completion,
whereas we aim to detect an action with limited computation. As such, whereas
the early methods “front-load” computation—extracting all features for each
incoming frame—our method targets which features to compute when, and can
even skip frames altogether. Furthermore, rather than learn a static model of
what the onset of an action looks like, we learn a dynamic policy that indicates
which computation to perform given past observations.

Fast object detection Various ways to accelerate object detection have been
explored [41–44]. Cascaded and coarse-to-fine detectors (e.g., [43,44]) determine
a fixed ordering of features to quickly reject unlikely regions. In contrast, our
work deals with activity recognition in video, and the feature ordering we learn
is dynamic, non-myopic, and generalizes to streaming data.

Active object and scene recognition in images Recent work considers
“active” and “anytime” object recognition in images [9–16, 45, 46]. The goal is
to determine which feature or classifier to apply next so as to reduce inference
costs and/or supply an increasingly confident estimate as time progresses. Sev-
eral methods explore dynamic feature/model selection algorithms for object and
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scene recognition [12, 13, 15, 16], using strategies based on reinforcement learn-
ing [11–13, 45], or myopic information gain [15, 16]. Though focused on scene
recognition in images, [16] also includes a preliminary trial for “dynamic scenes”
in short trimmed videos; however, the model does not represent temporal dy-
namics, the data is batch-processed, and gains over passive recognition are not
shown. These existing methods categorize an image (recognition) [13,46], search
for an object (detection) [9–11,14] or perform structured prediction [45].

This family of methods is most relevant to our goal. However, whereas prior
work performs object/scene recognition in images, we consider activity recogni-
tion in streaming video. Feature triage on video offers unique challenges. Active
recognition on images is a feature ordering task: one has the entire image in hand
for processing, and the results of selected observations are static and simply accu-
mulate. In contrast, for video, features come and go, and we must update beliefs
over time and prioritize future observations accordingly. Furthermore, we must
represent temporal continuity (i.e., model context over both time and space)
and, when streaming, respect the hard limits of the video buffer size. In terms of
a Markov decision process, this translates into a much larger state-action space.

Allocating computation for video While we are not aware of any prior work
that dynamically prioritizes features for streaming activity recognition, there is
limited work prioritizing computation for other tasks in video. In [47], informa-
tion gain is used to determine which object detectors to deploy on which frames
for semantic segmentation. In [48], a second-order Markov model selects frames
to apply a more expensive algorithm, for face detection and background subtrac-
tion. A cost-sensitive approach to multiscale video parsing schedules inference
at different levels of a hierarchy (e.g., a group activity composed of individual
actions) using AND-OR graphs [49, 50]. Aside from being different tasks than
ours, all the above methods consider only the offline/batch scenario.

3 Approach

We first formalize the problem (Sec. 3.1). Then we present our approach and
explain the details of its batch and streaming variants (Sec. 3.2).

3.1 Problem Formulation

Let X ∈ X denote a video clip and let y ∈ Y denote an activity category
label. During training we have access to a set {(X1, y1), . . . , (XT , yT )} of video
clips, each labeled by one of L activity categories, yi ∈ {1, . . . , L}. The training
clips are temporally trimmed to the action of interest. At test time, we are
given a novel video that may be trimmed or untrimmed. For the trimmed case,
the ultimate goal is to predict the activity category label (i.e., a multi-way
recognition task). For the untrimmed case, the goal is to temporally localize
when an activity appears within it (i.e., a binary detection task).1

1 For clarity of presentation, in the following we present our method assuming a
trimmed input video; Sec. 3.2 explains adjustments for untrimmed inputs.
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First, we train an activity recognition module using the labeled videos. Let
Ψ(X) denote a descriptor computed for video X. We train an activity classifier
f : Ψ × Y → R to return a posterior for the specified activity category:

f(Ψ(X), y) = P (y|X). (1)

We use one-vs-all multi-class logistic regression classifiers for f and bag-of-object
or CNN descriptors for Ψ (details below), though other choices are possible.
When training f , descriptors on training videos are fully instantiated using all
frames. This classifier is trained and fixed prior to policy learning.

We formulate dynamic feature prioritization as a reinforcement learning prob-
lem: the system must learn a policy to request the features in sequence that will,
over the course of a recognition episode, maximize its confidence, i.e. the proba-
bility estimate of f , of the true activity category. At test time, given an unlabeled
video, inference is a sequential process. At each step k = 1, . . . ,K of an episode
we must 1) actively prioritize the next feature computation action and 2) refine
the activity category prediction. Thus, our primary goal is to learn a dynamic
policy π that maps partially observed video features to the next most valuable
action. This policy should be far-sighted, such that its choices account for in-
teractions between the current request and subsequent features to be selected.
Furthermore, it should respect a computational budget, meaning it conforms to
constraints on the feature request costs and/or the number of inference steps
permitted. We consider both batch and streaming recognition settings.

3.2 Learning the Feature Prioritization Policy

We develop a solution using a Markov decision process (MDP), which is defined
by the following components [51]:

• A state sk that captures the current environment at the k-th step of the
episode, defined in terms of the history of extracted features and prior actions.

• A set of discrete actions A = {am}Mm=1 the system can perform at each step
in the episode, which will lead to an update of the state. An action extracts
information from the video.

• An instant reward rk = R(sk, a
(k), sk+1) received by transitioning from state

sk to state sk+1 after taking action a(k), defined in terms of activity recogni-
tion. The total reward is

∑
k γ

kR(sk, a
(k), sk+1), where γ ∈ [0, 1] is a discount

factor on future rewards. Larger values lead to more far-sighted policies.
• A policy π : s→ a determines the next action based on the current state. It

selects the action that maximizes the expected reward:

π(sk) = arg max
a

E[R|sk, a, π], (2)

for this action and future actions continuing under the same policy.

We next detail the video representation, state-action features, and rewards
for the general case. Then, we define aspects specific to the batch and streaming
settings, respectively.
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Video Descriptors and Actions Our algorithm accommodates a range of
descriptor/classifier choices. The requirements are that the descriptor 1) have
temporal locality, and 2) permit incremental updates as new descriptor instances
are observed. These specs are met by popular “bag-of-X” and CNN frame fea-
tures, as we will demonstrate in results, as well as others like quantized dense
trajectories or human body poses.

We focus our implementation primarily on a bag-of-objects descriptor. Sup-
pose we have object detectors for N object categories. The fully observed de-
scriptor Ψ(X) is an N -dimensional vector, where Ψn(X) is the likelihood that
the n-th object appears (at least once) in the video clip X. We chose a bag-of-
objects for its strength in compactly summarizing high-level content relevant to
activities [3,4,52]. For example, an activity like “making sandwich” is definable
by bread, knife, frig, etc. Furthermore, it exposes semantic temporal context
valuable for sequential feature selection. For example, after seeing a mug, the
system may learn to look next for either a tea bag or a coffee maker.

Each step in an episode performs some action a(k) ∈ A at a designated time
tk in the video. We define each action as a tuple am = 〈om, lm〉 consisting of
an object and video location.2 Specifically, om ∈ {1, . . . , N} specifies an object
detector, and lm specifies the space-time subvolume where to run it. The obser-
vation result xm of taking action am is the maximum detection probability of
object om in volume lm.3 It is used to incrementally refine the video represen-
tation Ψ(X). Let o(k) = n denote the object specified by selected action a(k).
Upon receiving x(k), the n-th entry in Ψ(Xk) ∈ RN is updated by taking the
maximum observed probability for that object so far:

Ψn(Xk) = max
(
Ψn(Xk), x(k)

)
, (3)

where Ψ(Xk) denotes the video representation based on the observation results
up to the k-th step of the episode. The initialization of Ψ(X) is explained below.

To alternatively apply our method with CNN features—which show promise
for video (e.g., [5–7])—we define the representation and actions as follows. The
video representation averages per-frame CNN descriptors:

Ψn(Xk) = mean
(
Xk
)
, (4)

and the action becomes am = lm, since we need to specify the temporal location
alone. Though very fast CNN extraction is possible (76 fps on a CPU [56]),
conventional approaches still require time linear in the length of the video, since
they touch each frame. We offer sub-linear time extraction; for example, our
results maintain accuracy for streaming recognition with CNNs while pulling
the features from fewer than 1% of the frames.

2 Note that a(k) identifies an action selected at step k in the episode, whereas am is
one of the M discrete action choices in A.

3 Some object detectors share features across object categories, e.g., R-CNN [53], in
which case it may be practical to simplify the action to select only the video volume
and apply all object classes. We use the DPM detector [54], which has the advantage
of near real-time detection [42] using a single thread, whereas R-CNN relies heavily
on parallel computation and hardware acceleration [55].
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State-Action Features With Q-learning [51], the value of actions E[R|s, a, π]
in Eq. (2) is evaluated with Qπ(s, a). It must return a value for any possible
state-action pair. Our state space is very large—equal to the number of possible
features times the number of possible space-time locations times their possible
output values. This makes exact computation of Qπ(s, a) infeasible. Thus, as
common in such complex scenarios, we adopt a linear function approximation
Qπ(s, a) = θTφ(s, a), where φ(s, a) is a feature representation of a state-action
pair and θ is learned from activity-labeled training clips (explained below).

The state-action feature φ(s, a) encodes information relevant to policy learn-
ing: the previous object detection results and the action history. Past object de-
tections help the policy learn to exploit object co-occurrences (e.g., that running
a laptop detector after finding soap is likely wasteful) and select discriminative
but yet-unseen objects (e.g., having seen a chair, looking next for a bed or dish
could disambiguate the bedroom or kitchen context, whereas a cell phone would
not). The action history can also benefit the policy, letting it learn to avoid
redundant selections.

Motivated by these requirements, we define the state-action feature φ(s, a) ∈
RN+M as

φ(sk, a) = [Ψ(Xk), δtk], (5)

where Ψ(Xk) encodes the detection results and δtk encodes the action history.
Ψ(Xk) ∈ RN is the representation defined above. The action history feature
δtk ∈ RM encodes how long it has been since each action was performed in the
episode, which for action m is

δtk(m) = tk −max
i
{ti|a(i) = am}, (6)

with δtk(m) = 0 if am has never been performed before.
To encode actions into the state-action representation φ(s, a), we learn one

linear model θam for each action (details below), such thatQπ(s, am) = θTamφ(s, a).

In the following, we denote θ={θam}Mm=1.

Reward We define a smooth reward function that rewards increasing confi-
dence in the correct activity label, our ultimate prediction task. Intuitively, the
model should continuously gather evidence for the activity during the episode,
and its confidence in the correct label should increase over time and surpass all
other activities by the time the computation budget is exhausted. Accordingly,
for a training episode run on video X with label y∗, we define the reward:

R(sk, a
(k), sk+1) = f(Ψ(Xk+1), y∗)− f(Ψ(Xk), y∗). (7)

With this definition, a new action gets no “credit” for confidence attributable
to previous actions. We found that rewarding accuracy increases per unit time
performs similarly to training multiple policies targeting fixed budgets. More-
over, the proposed reward has the advantage that we can run the policy for as
long as desired at test time, which is essential for streaming video. Fixed-budget
policies, though common in RL, are ill-suited for streaming data since we cannot
know in advance the test video’s duration and the budget to allocate.
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Step k
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Step k+1 Step k+2
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f(                        …) 

Making Tea

?      ?     0.8   0.9
(skip)Buffer k ……k+1

Video Partition
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Batch
Possible Actions

Skip

Recognition Episode (for streaming)

Fig. 1: Action spaces. Left top: In batch, the whole video is divided into subvolumes, and actions
are defined by the volume and object category to detect. Left bottom: In streaming, the video is
divided into segments by the buffer at each step, and actions are the object category to detect in
the buffer plus a “skip” action. Right: Our method learns a policy to dynamically select a sequence
of useful features to extract. Note this episode depicts the streaming case.

Dynamic Feature Prioritization Policy We learn the policy π using policy
iteration [51]. Policy iteration is an iterative algorithm that alternates between
learning θ from samples {Qπ(s, a), φ(s, a)} and generating samples using the
learned π. Given the policy parameter θ(i) at iteration i, we generate samples
by running recognition episodes on training videos and collect the state features
φ(sk, a

(k)) and instant rewards rk from each step of the episode. The action re-
ward Qπ(sk, a

(k)) is the total reward from Eq. 7 (with discounting) after finishing
the episode. See Supp. for details.

After collecting the training samples, the new policy parameter θ(i+1) is
learned by solving one ridge regression for each action. The algorithm then iter-
ates, generating new samples using θ(i+1). We run a fixed number of iterations
to learn the policy and keep all the training samples from previous iterations
when learning the new policy parameters. To ensure the algorithm sufficiently
explores the state space, we use an ε-greedy algorithm, selecting a random action
instead of a(k) = π(sk) with probability ε when generating training samples.

Batch Recognition Setting In the batch recognition setting, we have access
to the entire test video throughout an episode, and the budget is the total
resources available for feature computation, i.e., as capped by episode length K.
In this case, our model is free to run an object detector at arbitrary locations.
Most existing activity recognition work assumes this setting, though without
imposing a computation limit. It captures the situation where one has an archive
of videos to be recognized offline, subject to real-world resource constraints (e.g.,
auto-tagging YouTube clips under a budget of CPU time).

Each candidate location lm in the action set is a spatio-temporal volume. Its
position and size is specified relative to the entire clip, so that the number of
possible actions is constant even though video lengths and resolutions may vary.
We use non-overlapping volumes splitting the video in half in each dimension.
See Figure 1, top left. Note that while the bag-of-objects discards order, the
action set preserves it. That means our policy can learn to exploit the space-
time layout of objects if/when beneficial to feature prioritization (e.g., learning
it is useful to look for a washing machine after a laundry basket, or an pot above
a stove).

In the batch setting, performing the same action at different steps in the
episode will produce the same observation. Without loss of generality, we define
the time an action is performed as a constant tk=const.∀k, and the action
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history feature δtk becomes a binary indicator showing whether an action has
been performed in the episode. We forbid the policy to choose actions that have
been performed since they provide no new information.

By design, the bag-of-objects is accumulated over time. We impute the ob-
servations of un-performed actions by exploiting previously learned object co-
occurrence statistics. In particular, we represent the M -dimensional distribution
over the action space with a Gaussian Mixture Model (GMM). We learn its
parameters on the same data that trains f , which has full object detection re-
sults on all videos. We initialize Ψ(X0) with the average posteriors observed in
that same training set. Then to impute x̃u for an un-taken action, we take the
expected value using the GMM.

Streaming Recognition Setting In the streaming setting, recognition takes
place at the same time the video stream is received, so the model can only access
frames received before the current time step. Further, the model has a fixed size
buffer that operates in a first-in-first-out manner; its feature requests may only
refer to frames in the current buffer. Though largely unexplored for activity
recognition, the streaming scenario is critical for applications with stringent
resource constraints. For example, when capturing long-term surveillance video
or wearable camera data, it may be necessary to make decisions online without
storing all the data.

The feature extractor can process a fixed number of frames per second (FPS),
and this rate indirectly determines the resource budget. That is, the faster the
feature extractors can run, the more of them we can apply as the buffer moves
forward. A recognition episode ends when it reaches the end of a video stream.

The action space consists of the N object detectors (or alternatively, the
single CNN descriptor); an action’s space-time location lm is always the entire
current buffer. We further define a skip action a0, which instructs the model
to wait until the next frame arrives without performing any feature extraction.
Thus, for streaming, the number of actions equals the number of objects plus
one (M=N+1). See Figure 1, bottom left. The skip action saves computation
when the model expects a new observation will not benefit the recognition task.
For example, if the model is confident that the video is taken in a bedroom, and
all un-observed objects would appear only in the bathroom, then forcing the
system to detect new objects is wasteful.

Because new frames may arrive and old frames may be discarded during
an action, the video content available to the model will change between steps;
performing the same action at different steps yields different observations. To
connect the video content in the buffer and the actions in the episode, we define
the time tk of the k-th action using the last frame number in the buffer when
the action was issued by the policy.

While we assume so far the video contains only the target activity, i.e. the
video is trimmed to the span of the activity, our method generalizes to untrimmed
activity detection in the streaming environment. In that case, the target activity
only occurs in part of the video, and the system must identify the span where
the activity happens. This is non-trivial in the streaming environment.
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To handle the streaming input, we pose the problem in terms of frame-level
labeling: we predict a label for each frame as it is received, and the activity
detector must optimize accuracy across all frames. However, we do not estimate
the activity label from a single frame alone. Rather, we predict each frame’s label
using the temporal window around it. For every newly arrived frame, we consider
all the windows shorter than an upper bound β that end at the frame. We predict
the label of each window based on the same representation as trimmed video, and
we select the one with highest confidence as the prediction result of the target
frame. Note that this requires storing only the descriptors for recent history of
length β, but keeping no video beyond the current buffer. The activity recognizer
f is a binary classifier trained to determine whether the target activity occurs
in the window, and actions are terminated when a new frame arrives. Whereas
non-streaming methods can utilize complete sliding windows directly to predict
the activity span offline [25, 26], our method aggregates its shorter streaming
temporal window results to produce full detection windows.

4 Experiment

Datasets We evaluate on two datasets: the Activities of Daily Living [3] (ADL)
and UCF-101 [57]. ADL consists of 313 egocentric videos recorded by 14 sub-
jects, labeled with L=18 activity categories (e.g., making coffee, using computer).
Following [3], we train f in a leave-one-subject-out manner. Our policy is learned
on a disjoint set of 110 clips (those used in [3] for training object detectors). As
observations x(k), we use the provided object detector outputs for N=26 cat-
egories (1 fps). UCF-101 consists of 13,320 YouTube videos covering L=101
activities. We use the provided training splits to train f , reserve half of the test
splits for policy learning, and average results over all 6 splits. As observations
x(k), we use the object detector outputs for N=75 objects, kindly shared by the
authors of [4], which are frame-level scores (no bbox).4 For CNN frame descrip-
tors, we use the fc-7 activation of VGG-16 [58] from Caffe Model Zoo (1 fps).
The video clips average 78 and 19 seconds for ADL and UCF, respectively.

To create test data and policy learning data for the untrimmed experiments,
we concatenate multiple clips following [18, 38]. See Supp. for details. In all,
we obtain 8,410 (UCF) and 3,130 (ADL) untrimmed sequences, with lengths
averaging 2-7 minutes.

Baselines We compare to several methods:

• Passive: selects the next action randomly. It represents the most direct map-
ping of existing activity recognition methods to the resource-constrained regime.
The system does not actively decide which features to extract.

• Object-Preference [4]: a static feature selection heuristic employed for bag-
of-objects activity recognition. It prioritizes objects that appear frequently in

4 We retain the 75 objects among all 15,000 found most responsive for the activities,
following [4]. Because the provided detections are frame-level, we split volumes only
in the temporal dimension for lm on UCF.
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Fig. 2: Streaming recognition result. Left: Recognition accuracy as a function of object detector
speed. Our method reduces computation by more than 50% under the same accuracy. Right: Con-
fidence score improvement as the episode progresses. Our method improves the prediction more
rapidly than the baselines, indicating that it selects more informative features.

each activity. We average xm per activity and order am based on its maximum
response over all activities. Though the authors intend this metric to identify
the most discriminative objects—not to sequence feature extraction—it is a
useful reference point for how far one can get with static feature selection.

• Decision tree (DT): a static feature ordering method. We learn a DT to
recognize activities, where the attribute space consists of the Cartesian prod-
uct of object detectors and subvolume locations (lm). We sort the selected
attributes by their Gini importance [59]. In the streaming case, we test two
variations: DT-Static, where we cycle through the features in that order, and
DT-Top, where we take only the top P features and repeatedly apply all those
object detectors on each frame. P is equal to the object detector framerate.
Thus, DT-Top runs as many detectors as it can at framerate, prioritizing those
expected to be most discriminative.

• Max-Margin Early Event Detector (MMED) [18]: a state-of-the-art
early event detector designed for untrimmed streaming video. It aims to fire
on the activity as soon as possible after its onset. We implement it based on
structure SVM solver BCFW [60] and apply the authors’ default parameter
settings. The same window search process as in the untrimmed variant of our
method is used for prediction, with a window size ranging from 1 to β frames.

Implementation Details Please see supplementary material.

Streaming Activity Recognition First we test the streaming setting. In this
case, feature extraction speed (e.g., object detector speed) dictates the action
budget: the faster the features can be extracted, the more can be used while
keeping up with the incoming video framerate. We stress that to our knowledge,
no prior activity recognition work considers feature triage for streaming video.

Figure 2 (left 2 plots) shows the final recognition accuracy at the episode’s
completion, as a function of the object detectors’ speed.5 Our method performs
better than the rest, across the range of detector speeds. Overall, our method
reduces cost by 80% and 50% on UCF and ADL, respectively. The left side of the
plots is most interesting; by definition all methods will converge in accuracy once
the object detector framerate equals the number of possible objects to detect
(26 for ADL and 75 for UCF). DT-Top is the weakest method for this task. It
repeatedly uses only the most informative features, but they are insufficient to

5 Object-Pref [4] is not applicable to the streaming case because it lacks a unique
object response prior for the actions that is dependent on the buffer location.
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Fig. 3: Streaming recognition result on UCF-101 using CNN frame features. Our method achieves
over 90% of the ultimate accuracy by processing only 20% of sampled frames. With the 1fps sample
rate, this corresponds to 0.8% of frames in the entire video.

discriminate the 18 to 101 different activities. This result shows the necessity of
instance-dependent feature selection, which our method provides. Because our
method can skip frames, the actual amount of computation spent does not grow
linearly with detector speed. So, though hidden in Figure 2, our method performs
much less computation at the higher detector speeds. Figure 3 and 4 will more
directly show our runtime advantage.

Figure 2 (right 2 plots) shows the confidence score (of the ground truth
activity) over the course of the episodes. Here we apply the 8 fps detector. The
baseline methods improve their prediction smoothly, which indicates that they
collect meaningful detection results at the same rate throughout the episode. In
contrast, our method begins to improve rapidly after some point in the episode.
This shows that it starts to collect more useful information once it has explored
the novel video sufficiently. Because UCF uses about 4× more objects in the
representation, it takes more computation (actions) before the representation
converges. See Supp. for qualitative analysis of the policies learned.

Figure 3 shows our method has clear advantages if applied with CNN features
as well.6 Here the DT baselines are not applicable, since there is only one feature
type; the question is whether to extract it or not. The Passive baseline uniformly
distributes its frame selections. The left plot shows that no matter the framerate
of the CNN extractor, our method requires less than half of the frames to achieve
the same accuracy. The second plot shows our method achieves peak accuracy
looking at just a fraction of the streaming frames, where the accuracy is measured
over every step in the recognition. Our algorithm skips 80% of the frames, but
still achieves over 90% of the ultimate accuracy obtained using all frames. With
the base sampling rate of 1 fps, processing 20% of the frames means we extract
features for only 0.8% of the entire video.

In the third plot, we further combine improved dense trajectories [2] (IDT)
with the CNN features to show that our method can benefit from more pow-
erful features without modification. The right plot compares the cost-accuracy
tradeoff between the ultimate multi-class accuracy achieved by our streaming
method vs. that attained using exhaustive feature extraction. We obtain similar
accuracies with substantially less computation.

Untrimmed Video Activity Detection Next we evaluate streaming detec-
tion for untrimmed video. This setting permits comparison with the state of the
art MMED [18] “early” activity detector.

6 ADL is less amenable to full-frame CNN descriptors, due to domain shift of egocen-
tric video and the nature of the composite, object-driven activities.
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Fig. 4: Streaming untrimmed detection results, with comparison to [18]. (A): Accuracy (top, higher
is better) and computation cost (bottom) as a function of object detector framerate. (B): Activity
monitoring operating curves (top, lower is better) and corresponding computational costs (bottom).

Since we must predict whether each frame is encompassed by the target ac-
tivity, we measure accuracy with the F1-score. While we assume the episode
terminates after reaching the end of the video stream in our algorithm, in some
applications it may be sufficient to identify the occurrence of the activity and
then terminate the episode. Therefore, we further compare the detection time-
liness using the Activity Monitoring Operating Curve (AMOC), following [18].
AMOC is the normalized time to detection (NT2D) vs. the false positive rate
curve. The lower the value, the better the timeliness of the detector.

In Figure 4(A), the top plots show the F1-scores. Overall, our method per-
forms the best in terms of accuracy. On ADL, we achieve nearly twice the ac-
curacy of all baselines until the object detector speed reaches 16 fps. On UCF,
our method is comparable to the best baseline, DT-Top. Whereas DT-Top is
weak on UCF for the multi-class recognition scenario (see above), it fares well
for binary detection on this dataset. This is likely because the UCF activities
are often discriminated by one or few key objects, and we give the baselines the
advantage of pruning the object set to those most responsive on each activity.

The bottom two plots in Figure 4(A) show the actual number of object
detectors run. Our method reduces computation cost significantly under high
object detector speeds, thanks to its ability to forgo computation with the “skip”
action. In particular, it performs 50% fewer detections under 64 fps on UCF
while maintaining accuracy. On the other hand, the baseline methods’ cost grows
linearly with the object detector speed.

Figure 4(B) shows the AMOC under 4 fps detection speed (top, see Supp. for
others) and the associated computational costs (bottom). Despite the fact our
reward function does not specifically target this metric, our method achieves
excellent timeliness in detection. MMED performs second best on the metric,
but it incurs much higher computation cost than ours, as shown by the bar
charts. This is because MMED is trained to fire early, but always extracts all
features in the frames it does process.

Batch Activity Recognition Finally, we test the batch setting. We evaluate
accuracy as a function of the computation budget—the fraction of all possible
actions the algorithm performs (i.e., the number of features it extracts, normal-
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Fig. 5: Batch recognition accuracy/confidence score vs. computation budget. Our method outper-
forms the baselines, especially when the computation budget is low.

ized by video length). “All possible” features would be extracting all features in
all frames (1 fps).

Figure 5 shows the results. Our method outperforms the baselines, especially
when the computation budget is low (< 0.5). In fact, extracting only 30% of the
features on ADL, we achieve the same accuracy as with all features. Without
a budget constraint, the video representation will converge to that of the full
observation—no matter what method is used; that is, all methods must attain
the same accuracy on the rightmost point on each plot. Our method shows more
significant gains on ADL than UCF. We think this reflects the fact that the
object categories for ADL are tailored well for the activities (e.g., household
items), whereas the object bank for UCF includes arbitrary objects which may
not even appear in the dataset. Furthermore, ADL has more objects in any single
activity, offering more signal for our method to learn. Object-Pref [4] is next best
on ADL, though it is noticeably weaker on UCF because it does not account for
the temporal redundancy of the dataset. Our method is 2.5 times faster than
this nearest competing baseline.

Surprisingly, the Decision Tree (DT) baseline performs similarly to Passive.
(Note that DT-Static only is used; DT-Top is applicable only for the streaming
case.) We attempted to improve its accuracy by learning it on the same fea-
tures as f , i.e., dropping the subvolumes from the attributes and running one
object detector over the entire video for each action. However, this turned out
to be worse due to redundant/wasteful detections. This shows the importance
of coping with partially observed results, which the proposed method can do.

Our contribution is not a new model for activity recognition, but instead a
method that enables activity recognition for existing features/classifiers without
exhaustive feature computation. This means the accuracies achieved with “all
features” is the key yardstick to hold our results against. Nonetheless, to put in
context with other systems: the base batch recognition model we employ gets
results slightly better than the state-of-the-art on ADL [3,61] and within 4.5-11%
of the state-of-the-art using comparable features on UCF [4,5].

5 Conclusions

We developed a dynamic feature extraction strategy for activity recognition
under computational constraints. On two diverse datasets, our method shows
competitive recognition performance under various resource limitations. It can
be used to consistently achieve better accuracy under the same resource con-
straint, or meet a given accuracy using less resources. In future work we plan to
investigate policies that reason about variable cost descriptors.
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