
Leaving Some Stones Unturned:
Dynamic Feature Prioritization for

Activity Detection in Streaming Video

Yu-Chuan Su and Kristen Grauman

University of Texas at Austin

The supplementary materials consist of:

– Qualitative examples showing recognition episodes in streaming environ-
ment. Also see our project webpage for video examples. (A)

– Streaming recognition results with different detector speeds (B).

– Un-trimmed detection results with different object detector speeds (C).

– State feature and reward function design (D).

– Details for policy iteration (E).

– Details for observation imputation in batch environment (F).

– Implementation details (G).

– Details for un-trimmed video generation (H).

A Example Recognition Episodes

Table 1 shows example excerpts of learned policies with objects. Here we see, for
example, how our approach learns to detect objects that can verify current activ-
ity hypothesis or differentiate ambiguous activities, e.g., tap does not co-occur
with TV, so seeing tap rules out “Watch-TV.” It also demonstrates detailed
memory such that it looks for objects that have been observed before but in a
different status (actively being used by the recorder vs. passively sitting there).

See the project webpage for more video examples.

a(k) Result Observed Obj. Possible Activities a(k+1)

TV
+ None Watch-TV TV-remote
- Kettle Watch-TV/Make-tea Tea-bag
- Bottle Drink-water Fridge

Tap
+ Dent-floss Brush-teeth Soap-passive
- Dish Wash-dish/Watch-TV Tap
- Soap-passive Wash-hand Soap-active

Table 1: Excerpts of policies learned from ADL in the streaming case. “+” and “-”
indicate whether the object is detected at step-k. Observed objects are those observed
before a(k), and possible activities are the most likely activities predicted at step-k.

2 Y.-C. Su and K. Grauman

0 0.2 0.4 0.6 0.8

0.16

0.17

0.17

0.18

C
on

fi
d
en

ce
S
co

re

ADL FPS 1

0 0.2 0.4 0.6 0.8

0.16

0.17

0.18

0.19

ADL FPS 2

0 0.2 0.4 0.6 0.8

0.16

0.18

0.2

ADL FPS 4

0 0.2 0.4 0.6 0.8
0.16

0.18

0.2

0.22

0.24

ADL FPS 16

0 0.2 0.4 0.6 0.8

0.14

0.14

0.15

0.15

C
on

fi
d
en

ce
S
co

re

UCF FPS 4

0 0.2 0.4 0.6 0.8

0.14

0.16

0.18

0.2

UCF FPS 16

0 0.2 0.4 0.6 0.8

0.14

0.16

0.18

0.2

0.22

UCF FPS 32

0 0.2 0.4 0.6 0.8

0.15

0.2

UCF FPS 64

Fraction of Computation Spent

Fraction of Computation Spent

Passive DT-Static DT-Top Ours

Fig. 1: Streaming recognition accuracy under different object detector speed. These
plots go with the one in Figure 3 of the main text.

B Streaming Recognition Result

We show the confidence score improvement during recognition episodes with an
8 fps object detector speed in Section 4.2 of the main paper. For other object
detector speeds, please refer to Figure 1. The results are consistent with that of
8 fps, where our method performs better than others under all object detector
speeds, and the performance of different methods become more similar as the
detector speed becomes faster. We do not show the results of 1 and 2 fps on
UCF, because UCF videos are on average shorter, and for detectors that slow
the recognition episodes consist of single action for videos shorter than the buffer
size, making the curves meaningless.

Note the number of object N=26 for ADL and N=75 for UCF, and using
object detector speed that exceed the number of object will reduce the problem
to full observation of the video. Therefore, we show 32 fps and 64 fps results
only for UCF.

C Un-trimmed Video Activity Detection Result

In the paper, we show AMOC under 4 fps object detector speed due to space
limit. For the complete result, please refer to Figure 2 which shows AMOC under
all other object detector speeds. Similar to the result in the paper, our method
achieves excellent timeliness under all object detector speeds. Also, we can see
more clearly how our method reduces computational cost under a high object
detector speed. It uses only half of the computation on UCF under 64 fps object
detector speed while remaining the best performing method.

Dynamic Feature Prioritization for Activity Detection in Streaming Video 3

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

T
im

e
to

D
et
ec
ti
on

ADL FPS 1

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 ADL FPS 2

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 ADL FPS 8

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 ADL FPS 16

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

10

20

#
O
b
j.
-D

et
.

/
F
ra
m
e

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

10

20

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

10

20

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

10

20

False Positive Rate

Passive DT-Static DT-Top MMED [18] Ours

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

T
im

e
to

D
et
ec
ti
on

UCF FPS 1

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 UCF FPS 2

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 UCF FPS 8

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1 UCF FPS 16

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

20

40

60

#
O
b
j.
-D

et
.

/
F
ra
m
e

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

20

40

60

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

20

40

60

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

20

40

60

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

T
im

e
to

D
et
ec
ti
on

UCF FPS 32

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1 UCF FPS 64

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

20

40

60

#
O
b
j.
-D

et
.

/
F
ra
m
e

Pa
ssi
ve

Sta
tic To

p

MMED Ou
rs

0

20

40

60

False Positive Rate

False Positive Rate

Fig. 2: AMOC under different object detector speed. These plots go with the ones in
Figure 4 of the main text.

4 Y.-C. Su and K. Grauman

D State Feature and Reward Function Design

The intuition behind our state feature design is explained in the second para-
graph of the State-Action Features section in the main paper. It is also motivated
by [1, 2], except that the action history is no longer a binary indicator function
as in the batch setting of [1, 2].

Our reward function design is intuitive: it requires the policy to gradually
increase the predicted probability of the correct label. Although learning one
specific policy for each budget constraint is a common strategy in reinforcement
learning, i.e. learn a policy π(N) to perform exactly N actions before making
the prediction for N = 1 ∼ ∞, this strategy is not applicable in the streaming
setting because we do not know the length of the recognition episode in advance
and cannot switch between different policies since there is no guarantee that the
first N steps of π(N+1) is exactly the same as π(N). Also, empirical results show
that our single policy performs similarly to multiple fixed-budget policies in the
batch setting.

E Policy Iteration Details

In this section, we describe the details of our policy iteration implementation.
Policy iteration is an iterative algorithm that alternates between generating
training samples given a policy π(i) parametrized by θ(i) and learning θ(i+1)

given the generated training samples. We describe the steps within one iteration
next.

Given the policy π(i) learned from the previous iteration, new training sam-
ples are generated by running recognition episode on all videos following π(i).
For each video, the recognition episode will result in a series of three tuple

{(a(k), ϕ(sk, a(k)), rk)}
Kj

k=1, where the length Kj is the number of actions per-
formed when recognizing video vj . Each three tuple corresponds to one action
in the episode, and we collect the corresponding action, state-action-feature and
reward during recognition. The target value for Qπ(s, a) can be computed as

E[R|sk, a, π] =
Kj∑
k

γkrk,

following the equation in line 214 after finishing the recognition episode. There-
fore, we can transform the three tuples into (ak, ϕ(sk, a

(k)), E[R|sk, a(k), π]).
Learning θ(i+1) from the three tuples becomes a regression problem

E[R|sk, a(k), π] = θTa(k)ϕ(sk, a
(k)),

where we solve it using ridge regression.
To improve exploration, we apply ϵ-greedy strategy in the recognition episode

during data generation. In other words, we pick the action with maximumQ(s, a)
with probability 1− ϵ and a random action with probability ϵ. We use random
policy for π(0) in the first iteration to generate samples, and we use all the
samples generated during iteration 1 ∼ i to learn θ(i+1).

Dynamic Feature Prioritization for Activity Detection in Streaming Video 5

F Observation Imputation

In this section, we describe the details of observation imputation in batch recog-
nition environment mentioned in Section 3.2. Let x̃ ∈ RM represent the obser-
vation results of all actions on a video, where the m-th dimension x̃m = xm

corresponds to the result of m-th action. The vector x̃ represents the object
configuration in a video, and we learn its probability p(x̃) on the same data that
trains the activity recognizer using a Gaussian Mixture Model:

p(x̃) =
n∑

i=1

wiN (x̃|µi, Σi), (1)

where we enforce a diagonal Σi for computational efficiency. At test time, the
model can be partitioned as

x̃ =

[
x̃u

x̃p

]
, µi =

[
µiu

µip

]
, Σi =

(
Σiu 0
0 Σip

)
, (2)

where x̃p corresponds to the observation results of performed actions and x̃u to
un-performed actions. We estimate x̃u using its expected value over the condi-
tional probability p(x̃u|x̃p), i.e.

⟨x̃u⟩ =
n∑

i=1

w′
iµip, (3)

where

w′
i =

wiN (x̃p|µip, Σip)∑
i wiN (x̃p|µip, Σip)

. (4)

G Implementation Details

We run 8 iterations of policy iteration, with γ=0.4. We initialize ϵ=0.5 for ϵ-
greedy exploration, and decrease by 0.1 each iteration with lower bound 0.05.
For the streaming case, we use the video framerate inherited from ADL (1 fps),
and evaluate over a range of object detector framerates. We fix the buffer size
to half the median clip length, 25 seconds. We set the window size upper bound
β to one-third of the number of object categories to avoid the model observing
all objects within the window. For all methods, we initialize Ψ(X) with features
computed in the first frame in the streaming case.

H Generate Un-trimmed Video

We concatenate trimmed video clips to simulate an un-trimmed video stream
following [3, 4]. Although concatenation may introduce discontinuity in content,
it resembles scenarios in real videos. For example, it is similar to the video

6 Y.-C. Su and K. Grauman

where the recorder walks from one room to another and starts the next activity.
We concatenate five trimmed video clips for one un-trimmed video. For each
positive clip, we generate five un-trimmed videos by placing the positive clip in
different temporal location and drawing four negative clips for other locations
randomly. We sort the categories by their trimmed full observation results, and
take the top 8 for untrimmed experiments. For all experiments with trimmed
data (streaming/batch), we use the datasets as-is and test all 18 (ADL) and 101
(UCF) activity categories.

Dynamic Feature Prioritization for Activity Detection in Streaming Video 7

References

1. Karayev, S., Fritz, M., Darrell, T.: Anytime recognition of objects and scenes. In:
CVPR. (2014)

2. Karayev, S., Baumgartner, T., Fritz, M., Darrell, T.: Timely object recognition. In:
NIPS. (2012)

3. Hoai, M., la Torre, F.D.: Max-margin early event detectors. In: CVPR. (2012)
4. Chen, C.Y., Grauman, K.: Efficient activity detection with max-subgraph search.

In: CVPR. (2012)

