Detecting Engagement in Egocentric Video

Yu-Chuan Su and Kristen Grauman The University of Texas at Austin

http://vision.cs.utexas.edu/projects/ego-engagement

1. Engagement in Egocentric Video

Motivation: people do not always engage with what they see and pay different levels of attention to the environment

Goal: given an egocentric video, we want to predict when the camera wearer is engaged with what he sees.

Engagement Level

4. Predict Engagement from Motion

Challenge of engagement detection

- Diverse visual content
- Being engaged \neq being static
- Duration of engagement varies significantly
- 1. Estimate frame-wise engagement

Frame-level

Definition of Engagement

The recorder is attracted by some object(s), and he interrupts his ongoing flow of activity to purposefully gather more information about the object(s).

Applications Behavior analysis Camera control

VR display

Engagement is different from saliency: Previous work [Hare] '06, Itti '09, Rudoy '13, ...] on visual attention focuses on where the people look but ignores when people are engaged.

Frame-level motion descriptor

2. Generate interval hypotheses

Engagement Level

2. UT Egocentric Engagement (UT EE) Dataset

We collect videos in three **browsing** scenarios:

Video Statistics

- 27 videos
- 9 recorders
- 14 hours total length

Shopping in a Market

Window Shopping in Mall

Engagement Annotation

Frame-level annotation with MTurk. Each video is labeled by **10 Turkers**. Ground truth is determined by majority vote.

3. Data Analysis

We collect **3 hours** of recorder self-annotation to verify the third person annotation.

			Frame F_1	Interval F_1		
				Boundary	Presence	
Turker	vs.	Consensus	0.818	0.837	0.914	
	vs.	Recorder	0.589	0.626	0.813	
Random	vs.	Consensus	0.426	0.339	0.481	
	vs.	Recorder	0.399	0.344	0.478	
Engagement is predictable from egocentric video!						

- Our method performs the best in all settings
- Interval hypothesis has clear positive impact
 - Appearance feature does not generalize well (UT Ego)
- Saliency/Motion Mag. performs poorly
- We outperform Important Region without train on UT Ego