Pano2Vid: Automatic Cinematography for Watching 360° Video

Yu-Chuan Su, Dinesh Jayaraman, and Kristen Grauman The University of Texas at Austin http://vision.cs.utexas.edu/projects/Pano2Vid/

Construct Virtual Camera Trajectory

- Maximize accumulated score
- Smooth camera motion

How to find the right direction to watch?

Pano2Vid Definition

Input: 360° video **Output:** "natural-looking" normal-field-of-view (NFOV) video **Task: control** the virtual camera **direction**

2. Proposed Solution – AutoCam

Key Idea: Learn videography tendencies from Web videos

 $|\Delta \Omega_{\theta}| = |\theta_t - \theta_{t-1}| \le \epsilon_{\theta}, \ |\Delta \Omega_{\phi}| = |\phi_t - \phi_{t-1}| \le \epsilon_{\phi}$ Reduce to shortest path problem

4. Evaluation Metrics

HumanCam-based Metrics

Output videos should look like human-captured videos.

- Distinguishability
- HumanCam-likeness
- Transferability

HumanEdit-based Metrics Virtual camera trajectories should be similar to humanselected ones.

- Cosine similarity
- FOV overlap

- Learn diverse capture-worthy content
- Pickup proper composition

Spatio-Temporal Glimpses

- Short NFOV video extracted from 360° video
- Makes 360° content comparable with NFOV videos
- Fixed camera parameter & direction

Sample ST-glimpses

Sample ST-glimpses and reduce the problem to ST-glimpses selection.

5. Experiments

Dataset: videos cralwed from YouTube using keywords

"Hiking", "Mountain climbing", "Parade", "Soccer"

	# videos	Total length
360° videos*	86	7.3 hours
HumanCam	9,171	343 hours
HumanEdit	20#	202 minutes

Baselines

Center prior

Random trajectories

Eye-level prior

Static trajectories

Saliency

Replace capture-

Capture-worthiness score

- Does the ST-glimpse looks human-captured?
- Implement by discriminative classifier

Example ST-glimpses

